2008 iTest Problems/Problem 32
Revision as of 19:49, 4 August 2018 by Rockmanex3 (talk | contribs) (Solution to Problem 32 — need more precise approximation of pi than 3.14 or 22/7)
Problem
A right triangle has perimeter , and the area of a circle inscribed in the triangle is . Let A be the area of the triangle. Compute .
Solution
We know the perimeter and area of incircle, so we can find the semiperimeter of the triangle and radius of the incircle and plug the values into the area formula
The semiperimeter of the triangle is The radius of the incircle is . That means the area of the triangle is
By using a calculator (or noting that 10040\pi31541.59,\lfloor A \rfloor = \boxed{31541}$.
See Also
2008 iTest (Problems) | ||
Preceded by: Problem 31 |
Followed by: Problem 33 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • 61 • 62 • 63 • 64 • 65 • 66 • 67 • 68 • 69 • 70 • 71 • 72 • 73 • 74 • 75 • 76 • 77 • 78 • 79 • 80 • 81 • 82 • 83 • 84 • 85 • 86 • 87 • 88 • 89 • 90 • 91 • 92 • 93 • 94 • 95 • 96 • 97 • 98 • 99 • 100 |
Credit to r_fractal