# 2008 iTest Problems/Problem 85

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Let $(a,b,c,d)$ be a solution to the system \begin{align*}a+b&=15,\\ab+c+d&=78,\\ad+bc&=160,\\cd&=96.\end{align*} Find the greatest possible value of $a^2+b^2+c^2+d^2$.

## Solution

Note that when multiplying quadratics, terms add up similar to the equations of a system, so let \begin{align*} p(x) &= (x^2 + ax + c)(x^2 + bx + d) \\ &= x^4 + (a+b)x^3 + (ab+c+d)x^2 + (ad+bc)x + cd \\ &= x^4 + 15x^3 + 78x^2 + 160x + 96 \end{align*} Factoring $p(x)$ with the Rational Root Theorem results in $(x+4)(x+4)(x+1)(x+6)$. By the Fundamental Theorem of Algebra, we know that $x+4, x+4, x+1, x+6$ are all the linear factors of the polynomial, so the quadratic factors can only be multiplied from these linear factors.

There are only two possible distinct groupings (not counting rearrangements) -- $(x^2 + 8x + 16)(x^2 + 7x + 6)$ and $(x^2 + 5x + 4)(x^2 + 10x + 24)$. In the first case, $a^2 + b^2 + c^2 + d^2 = 405$, and in the second case, $a^2 + b^2 + c^2 + d^2 = 717$. The largest of the two options is $\boxed{717}$.