Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
Euler Line Madness
raxu   75
N 2 hours ago by lakshya2009
Source: TSTST 2015 Problem 2
Let ABC be a scalene triangle. Let $K_a$, $L_a$ and $M_a$ be the respective intersections with BC of the internal angle bisector, external angle bisector, and the median from A. The circumcircle of $AK_aL_a$ intersects $AM_a$ a second time at point $X_a$ different from A. Define $X_b$ and $X_c$ analogously. Prove that the circumcenter of $X_aX_bX_c$ lies on the Euler line of ABC.
(The Euler line of ABC is the line passing through the circumcenter, centroid, and orthocenter of ABC.)

Proposed by Ivan Borsenco
75 replies
raxu
Jun 26, 2015
lakshya2009
2 hours ago
Own made functional equation
Primeniyazidayi   8
N 2 hours ago by MathsII-enjoy
Source: own(probably)
Find all functions $f:R \rightarrow R$ such that $xf(x^2+2f(y)-yf(x))=f(x)^3-f(y)(f(x^2)-2f(x))$ for all $x,y \in \mathbb{R}$
8 replies
Primeniyazidayi
May 26, 2025
MathsII-enjoy
2 hours ago
IMO ShortList 2002, geometry problem 7
orl   110
N 2 hours ago by SimplisticFormulas
Source: IMO ShortList 2002, geometry problem 7
The incircle $ \Omega$ of the acute-angled triangle $ ABC$ is tangent to its side $ BC$ at a point $ K$. Let $ AD$ be an altitude of triangle $ ABC$, and let $ M$ be the midpoint of the segment $ AD$. If $ N$ is the common point of the circle $ \Omega$ and the line $ KM$ (distinct from $ K$), then prove that the incircle $ \Omega$ and the circumcircle of triangle $ BCN$ are tangent to each other at the point $ N$.
110 replies
orl
Sep 28, 2004
SimplisticFormulas
2 hours ago
Cute NT Problem
M11100111001Y1R   6
N 2 hours ago by X.Allaberdiyev
Source: Iran TST 2025 Test 4 Problem 1
A number \( n \) is called lucky if it has at least two distinct prime divisors and can be written in the form:
\[
n = p_1^{\alpha_1} + \cdots + p_k^{\alpha_k}
\]where \( p_1, \dots, p_k \) are distinct prime numbers that divide \( n \). (Note: it is possible that \( n \) has other prime divisors not among \( p_1, \dots, p_k \).) Prove that for every prime number \( p \), there exists a lucky number \( n \) such that \( p \mid n \).
6 replies
M11100111001Y1R
May 27, 2025
X.Allaberdiyev
2 hours ago
China MO 2021 P6
NTssu   23
N 2 hours ago by bin_sherlo
Source: CMO 2021 P6
Find $f: \mathbb{Z}_+ \rightarrow \mathbb{Z}_+$, such that for any $x,y \in \mathbb{Z}_+$, $$f(f(x)+y)\mid x+f(y).$$
23 replies
NTssu
Nov 25, 2020
bin_sherlo
2 hours ago
Prove that the circumcentres of the triangles are collinear
orl   19
N 3 hours ago by Ilikeminecraft
Source: IMO Shortlist 1997, Q9
Let $ A_1A_2A_3$ be a non-isosceles triangle with incenter $ I.$ Let $ C_i,$ $ i = 1, 2, 3,$ be the smaller circle through $ I$ tangent to $ A_iA_{i+1}$ and $ A_iA_{i+2}$ (the addition of indices being mod 3). Let $ B_i, i = 1, 2, 3,$ be the second point of intersection of $ C_{i+1}$ and $ C_{i+2}.$ Prove that the circumcentres of the triangles $ A_1 B_1I,A_2B_2I,A_3B_3I$ are collinear.
19 replies
orl
Aug 10, 2008
Ilikeminecraft
3 hours ago
c^a + a = 2^b
Havu   9
N 3 hours ago by Havu
Find $a, b, c\in\mathbb{Z}^+$ such that $a,b,c$ coprime, $a + b = 2c$ and $c^a + a = 2^b$.
9 replies
Havu
May 10, 2025
Havu
3 hours ago
An algorithm for discovering prime numbers?
Lukaluce   4
N 3 hours ago by alexanderhamilton124
Source: 2025 Junior Macedonian Mathematical Olympiad P3
Is there an infinite sequence of prime numbers $p_1, p_2, ..., p_n, ...,$ such that for every $i \in \mathbb{N}, p_{i + 1} \in \{2p_i - 1, 2p_i + 1\}$ is satisfied? Explain the answer.
4 replies
Lukaluce
May 18, 2025
alexanderhamilton124
3 hours ago
Orthocentroidal circle, orthotransversal, concurrent lines
kosmonauten3114   0
3 hours ago
Source: My own
Let $\triangle{ABC}$ be a scalene oblique triangle, and $P$ a point on the orthocentroidal circle of $\triangle{ABC}$ ($P \notin \text{X(4)}$).
Prove that the orthotransversal of $P$, trilinear polar of the polar conjugate ($\text{X(48)}$-isoconjugate) of $P$, Droz-Farny axis of $P$ are concurrent.

The definition of the Droz-Farny axis of $P$ with respect to $\triangle{ABC}$ is as follows:
For a point $P \neq \text{X(4)}$, there exists a pair of orthogonal lines $\ell_1$, $\ell_2$ through $P$ such that the midpoints of the 3 segments cut off by $\ell_1$, $\ell_2$ from the sidelines of $\triangle{ABC}$ are collinear. The line through these 3 midpoints is the Droz-Farny axis of $P$ wrt $\triangle{ABC}$.
0 replies
kosmonauten3114
3 hours ago
0 replies
inequality
Hoapham235   0
3 hours ago
Let $ 0 \leq a, b, c \leq 1$. Find the maximum of \[P=\dfrac{a}{\sqrt{2bc+1}}+\dfrac{b}{\sqrt{2ca+1}}+\dfrac{c}{\sqrt{2ab+1}}.\]
0 replies
Hoapham235
3 hours ago
0 replies
a