Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
Cute NT Problem
M11100111001Y1R   4
N 2 hours ago by RANDOM__USER
Source: Iran TST 2025 Test 4 Problem 1
A number \( n \) is called lucky if it has at least two distinct prime divisors and can be written in the form:
\[
n = p_1^{\alpha_1} + \cdots + p_k^{\alpha_k}
\]where \( p_1, \dots, p_k \) are distinct prime numbers that divide \( n \). (Note: it is possible that \( n \) has other prime divisors not among \( p_1, \dots, p_k \).) Prove that for every prime number \( p \), there exists a lucky number \( n \) such that \( p \mid n \).
4 replies
M11100111001Y1R
Today at 7:20 AM
RANDOM__USER
2 hours ago
USAMO 2003 Problem 4
MithsApprentice   72
N 2 hours ago by endless_abyss
Let $ABC$ be a triangle. A circle passing through $A$ and $B$ intersects segments $AC$ and $BC$ at $D$ and $E$, respectively. Lines $AB$ and $DE$ intersect at $F$, while lines $BD$ and $CF$ intersect at $M$. Prove that $MF = MC$ if and only if $MB\cdot MD = MC^2$.
72 replies
MithsApprentice
Sep 27, 2005
endless_abyss
2 hours ago
Easy but unusual junior ineq
Maths_VC   1
N 2 hours ago by blug
Source: Serbia JBMO TST 2025, Problem 2
Real numbers $x, y$ $\ge$ $0$ satisfy $1$ $\le$ $x^2 + y^2$ $\le$ $5$. Determine the minimal and the maximal value of the expression $2x + y$
1 reply
Maths_VC
3 hours ago
blug
2 hours ago
Bosnia and Herzegovina JBMO TST 2009 Problem 1
gobathegreat   1
N 2 hours ago by FishkoBiH
Source: Bosnia and Herzegovina Junior Balkan Mathematical Olympiad TST 2009
Lengths of sides of triangle $ABC$ are positive integers, and smallest side is equal to $2$. Determine the area of triangle $P$ if $v_c = v_a + v_b$, where $v_a$, $v_b$ and $v_c$ are lengths of altitudes in triangle $ABC$ from vertices $A$, $B$ and $C$, respectively.
1 reply
gobathegreat
Sep 17, 2018
FishkoBiH
2 hours ago
USAMO 2001 Problem 2
MithsApprentice   53
N 3 hours ago by lksb
Let $ABC$ be a triangle and let $\omega$ be its incircle. Denote by $D_1$ and $E_1$ the points where $\omega$ is tangent to sides $BC$ and $AC$, respectively. Denote by $D_2$ and $E_2$ the points on sides $BC$ and $AC$, respectively, such that $CD_2=BD_1$ and $CE_2=AE_1$, and denote by $P$ the point of intersection of segments $AD_2$ and $BE_2$. Circle $\omega$ intersects segment $AD_2$ at two points, the closer of which to the vertex $A$ is denoted by $Q$. Prove that $AQ=D_2P$.
53 replies
MithsApprentice
Sep 30, 2005
lksb
3 hours ago
A=b
k2c901_1   89
N 3 hours ago by reni_wee
Source: Taiwan 1st TST 2006, 1st day, problem 3
Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$.

Proposed by Mohsen Jamali, Iran
89 replies
k2c901_1
Mar 29, 2006
reni_wee
3 hours ago
Strange angle condition and concyclic points
lminsl   129
N 3 hours ago by Aiden-1089
Source: IMO 2019 Problem 2
In triangle $ABC$, point $A_1$ lies on side $BC$ and point $B_1$ lies on side $AC$. Let $P$ and $Q$ be points on segments $AA_1$ and $BB_1$, respectively, such that $PQ$ is parallel to $AB$. Let $P_1$ be a point on line $PB_1$, such that $B_1$ lies strictly between $P$ and $P_1$, and $\angle PP_1C=\angle BAC$. Similarly, let $Q_1$ be the point on line $QA_1$, such that $A_1$ lies strictly between $Q$ and $Q_1$, and $\angle CQ_1Q=\angle CBA$.

Prove that points $P,Q,P_1$, and $Q_1$ are concyclic.

Proposed by Anton Trygub, Ukraine
129 replies
lminsl
Jul 16, 2019
Aiden-1089
3 hours ago
Simple inequality
sqing   12
N 3 hours ago by Rayvhs
Source: MEMO 2018 T1
Let $a,b$ and $c$ be positive real numbers satisfying $abc=1.$ Prove that$$\frac{a^2-b^2}{a+bc}+\frac{b^2-c^2}{b+ca}+\frac{c^2-a^2}{c+ab}\leq a+b+c-3.$$
12 replies
sqing
Sep 2, 2018
Rayvhs
3 hours ago
Random concyclicity in a square config
Maths_VC   2
N 3 hours ago by Maths_VC
Source: Serbia JBMO TST 2025, Problem 1
Let $M$ be a random point on the smaller arc $AB$ of the circumcircle of square $ABCD$, and let $N$ be the intersection point of segments $AC$ and $DM$. The feet of the tangents from point $D$ to the circumcircle of the triangle $OMN$ are $P$ and $Q$ , where $O$ is the center of the square. Prove that points $A$, $C$, $P$ and $Q$ lie on a single circle.
2 replies
Maths_VC
4 hours ago
Maths_VC
3 hours ago
Serbian selection contest for the IMO 2025 - P3
OgnjenTesic   3
N 3 hours ago by atdaotlohbh
Source: Serbian selection contest for the IMO 2025
Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that:
- $f$ is strictly increasing,
- there exists $M \in \mathbb{N}$ such that $f(x+1) - f(x) < M$ for all $x \in \mathbb{N}$,
- for every $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that
\[
            f(y) = \frac{f(x) + f(x + 2024)}{2}.
        \]Proposed by Pavle Martinović
3 replies
OgnjenTesic
May 22, 2025
atdaotlohbh
3 hours ago
a