Stay ahead of learning milestones! Enroll in a class over the summer!

Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
Nice one
imnotgoodatmathsorry   3
N 2 hours ago by Bergo1305
Source: Own
With $x,y,z >0$.Prove that: $\frac{xy}{4y+4z+x} + \frac{yz}{4z+4x+y} +\frac{zx}{4x+4y+z} \le \frac{x+y+z}{9}$
3 replies
imnotgoodatmathsorry
May 2, 2025
Bergo1305
2 hours ago
Imtersecting two regular pentagons
Miquel-point   2
N 2 hours ago by ohiorizzler1434
Source: KoMaL B. 5093
The intersection of two congruent regular pentagons is a decagon with sides of $a_1,a_2,\ldots ,a_{10}$ in this order. Prove that
\[a_1a_3+a_3a_5+a_5a_7+a_7a_9+a_9a_1=a_2a_4+a_4a_6+a_6a_8+a_8a_{10}+a_{10}a_2.\]
2 replies
Miquel-point
6 hours ago
ohiorizzler1434
2 hours ago
monving balls in 2018 boxes
parmenides51   1
N 3 hours ago by venhancefan777
Source: 1st Mathematics Regional Olympiad of Mexico Northwest 2018 P1
There are $2018$ boxes $C_1$, $C_2$, $C_3$,..,$C_{2018}$. The $n$-th box $C_n$ contains $n$ balls.
A move consists of the following steps:
a) Choose an integer $k$ greater than $1$ and choose $m$ a multiple of $k$.
b) Take a ball from each of the consecutive boxes $C_{m-1}$, $C_m$, $C_{m+1}$ and move the $3$ balls to the box $C_{m+k}$.
With these movements, what is the largest number of balls we can get in the box $2018$?
1 reply
parmenides51
Sep 6, 2022
venhancefan777
3 hours ago
inequality
danilorj   0
3 hours ago
Let $a, b, c$ be nonnegative real numbers such that $a + b + c = 3$. Prove that
\[
\frac{a}{4 - b} + \frac{b}{4 - c} + \frac{c}{4 - a} + \frac{1}{16}(1 - a)^2(1 - b)^2(1 - c)^2 \leq 1,
\]and determine all such triples $(a, b, c)$ where the equality holds.
0 replies
danilorj
3 hours ago
0 replies
P,Q,B are collinear
MNJ2357   28
N 4 hours ago by Ilikeminecraft
Source: 2020 Korea National Olympiad P2
$H$ is the orthocenter of an acute triangle $ABC$, and let $M$ be the midpoint of $BC$. Suppose $(AH)$ meets $AB$ and $AC$ at $D,E$ respectively. $AH$ meets $DE$ at $P$, and the line through $H$ perpendicular to $AH$ meets $DM$ at $Q$. Prove that $P,Q,B$ are collinear.
28 replies
MNJ2357
Nov 21, 2020
Ilikeminecraft
4 hours ago
Chinese Girls Mathematical Olympiad 2017, Problem 7
Hermitianism   45
N 4 hours ago by Ilikeminecraft
Source: Chinese Girls Mathematical Olympiad 2017, Problem 7
This is a very classical problem.
Let the $ABCD$ be a cyclic quadrilateral with circumcircle $\omega_1$.Lines $AC$ and $BD$ intersect at point $E$,and lines $AD$,$BC$ intersect at point $F$.Circle $\omega_2$ is tangent to segments $EB,EC$ at points $M,N$ respectively,and intersects with circle $\omega_1$ at points $Q,R$.Lines $BC,AD$ intersect line $MN$ at $S,T$ respectively.Show that $Q,R,S,T$ are concyclic.
45 replies
Hermitianism
Aug 16, 2017
Ilikeminecraft
4 hours ago
D1031 : A general result on polynomial 1
Dattier   1
N 4 hours ago by Dattier
Source: les dattes à Dattier
Let $P(x,y) \in \mathbb Q(x,y)$ with $\forall (a,b) \in \mathbb Z^2, P(a,b) \in \mathbb Z  $.

Is it true that $P(x,y) \in \mathbb Q[x,y]$?
1 reply
Dattier
Yesterday at 5:14 PM
Dattier
4 hours ago
Asymmetric FE
sman96   18
N 4 hours ago by jasperE3
Source: BdMO 2025 Higher Secondary P8
Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that$$f(xf(y)-y) + f(xy-x) + f(x+y) = 2xy$$for all $x, y \in \mathbb{R}$.
18 replies
sman96
Feb 8, 2025
jasperE3
4 hours ago
Easy Geometry
pokmui9909   6
N 4 hours ago by reni_wee
Source: FKMO 2025 P4
Triangle $ABC$ satisfies $\overline{CA} > \overline{AB}$. Let the incenter of triangle $ABC$ be $\omega$, which touches $BC, CA, AB$ at $D, E, F$, respectively. Let $M$ be the midpoint of $BC$. Let the circle centered at $M$ passing through $D$ intersect $DE, DF$ at $P(\neq D), Q(\neq D)$, respecively. Let line $AP$ meet $BC$ at $N$, line $BP$ meet $CA$ at $L$. Prove that the three lines $EQ, FP, NL$ are concurrent.
6 replies
pokmui9909
Mar 30, 2025
reni_wee
4 hours ago
Old hard problem
ItzsleepyXD   3
N 5 hours ago by Funcshun840
Source: IDK
Let $ABC$ be a triangle and let $O$ be its circumcenter and $I$ its incenter.
Let $P$ be the radical center of its three mixtilinears and let $Q$ be the isogonal conjugate of $P$.
Let $G$ be the Gergonne point of the triangle $ABC$.
Prove that line $QG$ is parallel with line $OI$ .
3 replies
ItzsleepyXD
Apr 25, 2025
Funcshun840
5 hours ago
a