Incircle in an isoscoles triangle

by Sadigly, May 16, 2025, 9:21 PM

Let $ABC$ be an isosceles triangle with $AB=AC$, and let $I$ be its incenter. Incircle touches sides $BC,CA,AB$ at $D,E,F$, respectively. Foot of altitudes from $E,F$ to $BC$ are $X,Y$ , respectively. Rays $XI,YI$ intersect $(ABC)$ at $P,Q$, respectively. Prove that $(PQD)$ touches incircle at $D$.

Nice original fe

by Rayanelba, May 15, 2025, 12:37 PM

Find all functions $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ that verify the following equation :
$P(x,y):f(x+yf(x))+f(f(x))=f(xy)+2x$
This post has been edited 2 times. Last edited by Rayanelba, Thursday at 4:22 PM
Reason: .

Concurrency from symmetric points on the sides of a triangle

by MathMystic33, May 13, 2025, 7:37 PM

Let $\triangle ABC$ be a triangle. On side $AB$ take points $K$ and $L$ such that $AK \;=\; LB \;<\;\tfrac12\,AB,$
on side $BC$ take points $M$ and $N$ such that $BM \;=\; NC \;<\;\tfrac12\,BC,$ and on side $CA$ take points $P$ and $Q$ such that $CP \;=\; QA \;<\;\tfrac12\,CA.$ Let $R \;=\; KN\;\cap\;MQ,
\quad
T \;=\; KN \cap LP, $ and $ D \;=\; NP \cap LM, \quad
E \;=\; NP \cap KQ.$
Prove that the lines $DR, BE, CT$ are concurrent.

Collinearity of intersection points in a triangle

by MathMystic33, May 13, 2025, 5:56 PM

On the sides of the triangle \(\triangle ABC\) lie the following points: \(K\) and \(L\) on \(AB\), \(M\) on \(BC\), and \(N\) on \(CA\). Let
\[
P = AM\cap BN,\quad
R = KM\cap LN,\quad
S = KN\cap LM,
\]and let the line \(CS\) meet \(AB\) at \(Q\). Prove that the points \(P\), \(Q\), and \(R\) are collinear.

geometry problem

by kjhgyuio, May 11, 2025, 12:38 AM

........
Attachments:

My Unsolved Problem

by MinhDucDangCHL2000, Apr 29, 2025, 4:53 PM

Let triangle $ABC$ be inscribed in the circle $(O)$. A line through point $O$ intersects $AC$ and $AB$ at points $E$ and $F$, respectively. Let $P$ be the reflection of $E$ across the midpoint of $AC$, and $Q$ be the reflection of $F$ across the midpoint of $AB$. Prove that:
a) the reflection of the orthocenter $H$ of triangle $ABC$ across line $PQ$ lies on the circle $(O)$.
b) the orthocenters of triangles $AEF$ and $HPQ$ coincide.

Im looking for a solution used complex bashing :(

Central sequences

by EeEeRUT, Apr 16, 2025, 1:37 AM

An infinite increasing sequence $a_1 < a_2 < a_3 < \cdots$ of positive integers is called central if for every positive integer $n$ , the arithmetic mean of the first $a_n$ terms of the sequence is equal to $a_n$.

Show that there exists an infinite sequence $b_1, b_2, b_3, \dots$ of positive integers such that for every central sequence $a_1, a_2, a_3, \dots, $ there are infinitely many positive integers $n$ with $a_n = b_n$.
This post has been edited 3 times. Last edited by EeEeRUT, May 11, 2025, 11:47 AM

I guess a very hard function?

by Mr.C, Mar 19, 2020, 4:56 PM

Find all functions from the reals to it self such that
$f(x)(f(y)+f(f(x)-y))=x^2$

Classical triangle geometry

by Valentin Vornicu, Jan 22, 2006, 3:32 PM

Let $ ABC$ be a triangle and $ K$ and $ L$ be two points on $ (AB)$, $ (AC)$ such that $ BK = CL$ and let $ P = CK\cap BL$. Let the parallel through $ P$ to the interior angle bisector of $ \angle BAC$ intersect $ AC$ in $ M$. Prove that $ CM = AB$.

Sequence inequality

by hxtung, Jun 9, 2004, 7:14 AM

Let $n$ be a positive integer and let $(x_1,\ldots,x_n)$, $(y_1,\ldots,y_n)$ be two sequences of positive real numbers. Suppose $(z_2,\ldots,z_{2n})$ is a sequence of positive real numbers such that $z_{i+j}^2 \geq x_iy_j$ for all $1\le i,j \leq n$.

Let $M=\max\{z_2,\ldots,z_{2n}\}$. Prove that \[
	\left( \frac{M+z_2+\dots+z_{2n}}{2n} \right)^2
	\ge
	\left( \frac{x_1+\dots+x_n}{n} \right)
	\left( \frac{y_1+\dots+y_n}{n} \right). \]

comment

Proposed by Reid Barton, USA
Attachments:

Stay insane,Coz it's your will, labour and pain,which takes you to the top of the mountain.

avatar

utkarshgupta
Archives
- September 2017
+ September 2016
+ July 2016
+ December 2015
+ August 2015
+ December 2014
Shouts
Submit
  • Here goes first post of 2025! Great blog.

    by math_holmes15, Jan 14, 2025, 8:53 AM

  • First post of 2024

    by Yiyj1, Feb 8, 2024, 5:40 AM

  • First post of 2023

    by HoRI_DA_GRe8, Jul 22, 2023, 7:45 AM

  • Nice blog ! Your isogonality lemma is really powerful !

    by 554183, Oct 14, 2021, 8:55 AM

  • Post plss....

    by samrocksnature, Apr 11, 2021, 10:12 PM

  • alas,this is ded

    by Hamroldt, Mar 18, 2021, 4:13 PM

  • Thanks for the nice blog.

    by Feridimo, Mar 6, 2020, 4:17 PM

  • I think this might be silly but ... when should we expect to have another post ?? I am very keen to see it :D

    by gamerrk1004, Nov 4, 2019, 4:54 PM

  • Let's all echo what's written in the blog description - Stay Insane / 'Cause it's your labor, will and pain/ That takes you to the top of soda fountain :D

    by Kayak, Oct 2, 2017, 7:18 PM

  • hey utkarsh jee is over now ... continue your elementary blog pleaseeeeeee!

    by kk108, Jun 17, 2017, 11:19 AM

  • Congrats on becoming a contest moderator!

    by Ankoganit, Mar 9, 2017, 5:22 AM

  • INTERSTING BLOG

    by kk108, Feb 19, 2017, 2:04 PM

  • I have no plans for this blog right now....
    No time here people !
    But lets see....
    I may try some combinatorics :P

    by utkarshgupta, Feb 15, 2017, 12:47 PM

  • Thanks for the nice blog!

    by Orkhan-Ashraf_2002, Feb 13, 2017, 6:34 PM

  • Revive it!!!
    Best blog out there, for sure!

    by rmtf1111, Jan 12, 2017, 6:02 PM

48 shouts
Tags
About Owner
  • Posts: 2280
  • Joined: Jan 4, 2013
Blog Stats
  • Blog created: Nov 30, 2013
  • Total entries: 86
  • Total visits: 40107
  • Total comments: 102
Search Blog
a