number theory

by mohsen, Apr 14, 2025, 7:26 PM

show that there exist natural numbers a,b such that none of the numbers a+1, a+2,...a+100 is divisible by none of b+1, b+2,..., b+100 but product of them is divisible by product of b+1,...,b+100.

Divisibility NT FE

by CHESSR1DER, Apr 14, 2025, 7:07 PM

Find all functions $f$ $N \iff N$ such for any $a,b$:
$(a+b)^n|a^{f(b)} + b^{f(a)}$ where a natural number n is given.
This post has been edited 1 time. Last edited by CHESSR1DER, 2 hours ago

Turbo's en route to visit each cell of the board

by Lukaluce, Apr 14, 2025, 11:01 AM

Let $n > 1$ be an integer. In a configuration of an $n \times n$ board, each of the $n^2$ cells contains an arrow, either pointing up, down, left, or right. Given a starting configuration, Turbo the snail starts in one of the cells of the board and travels from cell to cell. In each move, Turbo moves one square unit in the direction indicated by the arrow in her cell (possibly leaving the board). After each move, the arrows in all of the cells rotate $90^{\circ}$ counterclockwise. We call a cell good if, starting from that cell, Turbo visits each cell of the board exactly once, without leaving the board, and returns to her initial cell at the end. Determine, in terms of $n$, the maximum number of good cells over all possible starting configurations.

Proposed by Melek Güngör, Turkey
This post has been edited 1 time. Last edited by Lukaluce, Today at 11:54 AM

I found this question really easy, but it is a P4...

by Sadigly, Apr 13, 2025, 7:17 PM

Take a sequence $(a_n)_{n=1}^\infty$ such that

$a_1=3$

$a_n=a_1a_2a_3...a_{n-1}-1$

a) Prove that there exists infitely many primes that divides at least 1 term of the sequence.
b) Prove that there exists infitely many primes that doesn't divide any term of the sequence.

Inequality while on a trip

by giangtruong13, Apr 12, 2025, 12:24 PM

I find this inequality while i was on a trip, it was pretty fun and i have some new experience:
Let $a,b,c \geq -2$ such that: $a^2+b^2+c^2 \leq 8$. Find the maximum: $$A= \sum_{cyc} \frac{1}{16+a^3}$$
This post has been edited 1 time. Last edited by giangtruong13, Apr 12, 2025, 12:25 PM

NEPAL TST 2025 DAY 2

by Tony_stark0094, Apr 12, 2025, 8:40 AM

Consider an acute triangle $\Delta ABC$. Let $D$ and $E$ be the feet of the altitudes from $A$ to $BC$ and from $B$ to $AC$ respectively.

Define $D_1$ and $D_2$ as the reflections of $D$ across lines $AB$ and $AC$, respectively. Let $\Gamma$ be the circumcircle of $\Delta AD_1D_2$. Denote by $P$ the second intersection of line $D_1B$ with $\Gamma$, and by $Q$ the intersection of ray $EB$ with $\Gamma$.

If $O$ is the circumcenter of $\Delta ABC$, prove that $O$, $D$, and $Q$ are collinear if and only if quadrilateral $BCQP$ can be inscribed within a circle.

$\textbf{Proposed by Kritesh Dhakal, Nepal.}$
This post has been edited 1 time. Last edited by Tony_stark0094, Yesterday at 12:37 AM
Reason: typo

Rotating segment by 45 degrees and interchanging endpoints.

by Goutham, Feb 9, 2011, 9:58 AM

A needle (a segment) lies on a plane. One can rotate it $45^{\circ}$ round any of its endpoints. Is it possible that after several rotations the needle returns to initial position with the endpoints interchanged?

Equation in naturals

by Ahiles, Apr 30, 2009, 12:17 PM

Solve the equation
\[ 3^x - 5^y = z^2.\]
in positive integers.

Greece
This post has been edited 3 times. Last edited by Amir Hossein, Aug 16, 2012, 11:25 AM
Reason: Edited.

A nice collinearity problem

by April, Jul 13, 2008, 2:00 AM

Point $ P$ lies on side $ AB$ of a convex quadrilateral $ ABCD$. Let $ \omega$ be the incircle of triangle $ CPD$, and let $ I$ be its incenter. Suppose that $ \omega$ is tangent to the incircles of triangles $ APD$ and $ BPC$ at points $ K$ and $ L$, respectively. Let lines $ AC$ and $ BD$ meet at $ E$, and let lines $ AK$ and $ BL$ meet at $ F$. Prove that points $ E$, $ I$, and $ F$ are collinear.

Author: Waldemar Pompe, Poland

Italian WinterCamps test07 Problem5

by mattilgale, Jan 29, 2007, 8:40 AM

A sequence of real numbers $ a_{0},\ a_{1},\ a_{2},\dots$ is defined by the formula
\[ a_{i + 1} = \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}\quad i\geq 0;
\]here $a_0$ is an arbitrary real number, $\lfloor a_i\rfloor$ denotes the greatest integer not exceeding $a_i$, and $\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor$. Prove that $a_i=a_{i+2}$ for $i$ sufficiently large.

Proposed by Harmel Nestra, Estionia
This post has been edited 2 times. Last edited by djmathman, Jun 27, 2015, 12:02 AM
Reason: changed wording and formatting to match that of english version of ISL2006

Stay insane,Coz it's your will, labour and pain,which takes you to the top of the mountain.

avatar

utkarshgupta
Archives
- September 2017
+ September 2016
+ July 2016
+ December 2015
+ August 2015
+ December 2014
Shouts
Submit
  • Here goes first post of 2025! Great blog.

    by math_holmes15, Jan 14, 2025, 8:53 AM

  • First post of 2024

    by Yiyj1, Feb 8, 2024, 5:40 AM

  • First post of 2023

    by HoRI_DA_GRe8, Jul 22, 2023, 7:45 AM

  • Nice blog ! Your isogonality lemma is really powerful !

    by 554183, Oct 14, 2021, 8:55 AM

  • Post plss....

    by samrocksnature, Apr 11, 2021, 10:12 PM

  • alas,this is ded

    by Hamroldt, Mar 18, 2021, 4:13 PM

  • Thanks for the nice blog.

    by Feridimo, Mar 6, 2020, 4:17 PM

  • I think this might be silly but ... when should we expect to have another post ?? I am very keen to see it :D

    by gamerrk1004, Nov 4, 2019, 4:54 PM

  • Let's all echo what's written in the blog description - Stay Insane / 'Cause it's your labor, will and pain/ That takes you to the top of soda fountain :D

    by Kayak, Oct 2, 2017, 7:18 PM

  • hey utkarsh jee is over now ... continue your elementary blog pleaseeeeeee!

    by kk108, Jun 17, 2017, 11:19 AM

  • Congrats on becoming a contest moderator!

    by Ankoganit, Mar 9, 2017, 5:22 AM

  • INTERSTING BLOG

    by kk108, Feb 19, 2017, 2:04 PM

  • I have no plans for this blog right now....
    No time here people !
    But lets see....
    I may try some combinatorics :P

    by utkarshgupta, Feb 15, 2017, 12:47 PM

  • Thanks for the nice blog!

    by Orkhan-Ashraf_2002, Feb 13, 2017, 6:34 PM

  • Revive it!!!
    Best blog out there, for sure!

    by rmtf1111, Jan 12, 2017, 6:02 PM

48 shouts
Tags
About Owner
  • Posts: 2280
  • Joined: Jan 4, 2013
Blog Stats
  • Blog created: Nov 30, 2013
  • Total entries: 86
  • Total visits: 39674
  • Total comments: 102
Search Blog
a