Concurrence of lines defined by intersections of circles

by Lukaluce, Apr 14, 2025, 10:57 AM

Let $\triangle ABC$ be an acute-angled triangle and $A_1, B_1$, and $C_1$ be the feet of the altitudes from $A, B$, and $C$, respectively. On the rays $AA_1, BB_1$, and $CC_1$, we have points $A_2, B_2$, and $C_2$ respectively, lying outside of $\triangle ABC$, such that
\[\frac{A_1A_2}{AA_1} = \frac{B_1B_2}{BB_1} = \frac{C_1C_2}{CC_1}.\]If the intersections of $B_1C_2$ and $B_2C_1$, $C_1A_2$ and $C_2A_1$, and $A_1B_2$ and $A_2B_1$ are $A', B'$, and $C'$ respectively, prove that $AA', BB'$, and $CC'$ have a common point.

Changing the states of light bulbs

by Lukaluce, Apr 14, 2025, 10:44 AM

A set of $n \ge 2$ light bulbs are arranged around a circle, and are consecutively numbered with
$1, 2, . . . , n$. Each bulb can be in one of two states: either it is on or off. In the initial configuration,
at least one bulb is turned on. On each one of $n$ days we change the current on/off configuration as
follows: for $1 \le k \le n$, on the $k$-th day we start from the $k$-th bulb and moving in clockwise direction
along the circle, we change the state of every traversed bulb until we switch on a bulb which was
previously off.
Prove that the final configuration, reached on the $n$-th day, coincides with the initial one.

Arithmetic Sequence

by FireBreathers, Apr 14, 2025, 9:54 AM

Prove that there exist a natural number $n$ such that we can choose $n^9$ natural numbers $\leq n^{10}$, so no three of which form an arithmetic sequence.

Find the minimum

by sqing, Apr 14, 2025, 8:58 AM

Let $ABC$ be a triangle with $ BC=2AB$ and the rea is $2 . $ Find the minimum of $AC. $

Mock 22nd Thailand TMO P9

by korncrazy, Apr 13, 2025, 6:57 PM

Let $H_A,H_B,H_C$ be the feet of the altitudes of the triangle $ABC$ from $A,B,C$, respectively. $P$ is the point on the circumcircle of the triangle $ABC$, $H$ is the orthocenter of the triangle $ABC$, and the incircle of triangle $H_AH_BH_C$ has radius $r$. Let $T_A$ be the point such that $T_A$ and $H$ are on the opposite side of $H_BH_C$, line $T_AP$ is perpendicular to the line $H_BH_C$, and the distance from $T_A$ to line $H_BH_C$ is $r$. Define $T_B$ and $T_C$ similarly. Prove that $T_A,T_B,T_C$ are collinear.

pairwise coprime sum gcd

by InterLoop, Apr 13, 2025, 12:34 PM

For a positive integer $N$, let $c_1 < c_2 < \dots < c_m$ be all the positive integers smaller than $N$ that are coprime to $N$. Find all $N \ge 3$ such that
$$\gcd(N, c_i + c_{i+1}) \neq 1$$for all $1 \le i \le m - 1$.
This post has been edited 2 times. Last edited by InterLoop, Yesterday at 12:52 PM

Isosceles Triangle Geo

by oVlad, Apr 12, 2025, 9:38 AM

Consider the isosceles triangle $ABC$ with $\angle A>90^\circ$ and the circle $\omega$ of radius $AC$ centered at $A.$ Let $M$ be the midpoint of $AC.$ The line $BM$ intersects $\omega$ a second time at $D.$ Let $E$ be a point on $\omega$ such that $BE\perp AC.$ Let $N$ be the intersection of $DE$ and $AC.$ Prove that $AN=2\cdot AB.$

EGMO Genre Predictions

by ohiorizzler1434, Mar 28, 2025, 4:16 AM

Everybody, with EGMO upcoming, what are you predictions for the problem genres?


Personally I predict: predict

(3^{p-1} - 1)/p is a perfect square for prime p

by parmenides51, May 28, 2020, 4:10 AM

Find all prime numbers $p$ such that $\frac{3^{p-1} - 1}{p}$ is a perfect square.
This post has been edited 1 time. Last edited by parmenides51, May 28, 2020, 4:13 AM

Quadric equations

by JBMO2020, Apr 22, 2020, 6:10 AM

Given are 10 quadric equations $x^2+a_1x+b_1=0$, $x^2+a_2x+b_2=0$,..., $x^2+a_{10}x+b_{10}=0$.
It is known that each of these equations has two distinct real roots and the set of all solutions is ${1,2,...10,-1,-2...,-10}$. Find the minimum value of $b_1+b_2+...+b_{10}$
This post has been edited 1 time. Last edited by JBMO2020, Apr 22, 2020, 6:14 AM

Stay insane,Coz it's your will, labour and pain,which takes you to the top of the mountain.

avatar

utkarshgupta
Archives
- September 2017
+ September 2016
+ July 2016
+ December 2015
+ August 2015
+ December 2014
Shouts
Submit
  • Here goes first post of 2025! Great blog.

    by math_holmes15, Jan 14, 2025, 8:53 AM

  • First post of 2024

    by Yiyj1, Feb 8, 2024, 5:40 AM

  • First post of 2023

    by HoRI_DA_GRe8, Jul 22, 2023, 7:45 AM

  • Nice blog ! Your isogonality lemma is really powerful !

    by 554183, Oct 14, 2021, 8:55 AM

  • Post plss....

    by samrocksnature, Apr 11, 2021, 10:12 PM

  • alas,this is ded

    by Hamroldt, Mar 18, 2021, 4:13 PM

  • Thanks for the nice blog.

    by Feridimo, Mar 6, 2020, 4:17 PM

  • I think this might be silly but ... when should we expect to have another post ?? I am very keen to see it :D

    by gamerrk1004, Nov 4, 2019, 4:54 PM

  • Let's all echo what's written in the blog description - Stay Insane / 'Cause it's your labor, will and pain/ That takes you to the top of soda fountain :D

    by Kayak, Oct 2, 2017, 7:18 PM

  • hey utkarsh jee is over now ... continue your elementary blog pleaseeeeeee!

    by kk108, Jun 17, 2017, 11:19 AM

  • Congrats on becoming a contest moderator!

    by Ankoganit, Mar 9, 2017, 5:22 AM

  • INTERSTING BLOG

    by kk108, Feb 19, 2017, 2:04 PM

  • I have no plans for this blog right now....
    No time here people !
    But lets see....
    I may try some combinatorics :P

    by utkarshgupta, Feb 15, 2017, 12:47 PM

  • Thanks for the nice blog!

    by Orkhan-Ashraf_2002, Feb 13, 2017, 6:34 PM

  • Revive it!!!
    Best blog out there, for sure!

    by rmtf1111, Jan 12, 2017, 6:02 PM

48 shouts
Tags
About Owner
  • Posts: 2280
  • Joined: Jan 4, 2013
Blog Stats
  • Blog created: Nov 30, 2013
  • Total entries: 86
  • Total visits: 39668
  • Total comments: 102
Search Blog
a