Hagge-like circles, Jerabek hyperbola, Lemoine cubic

by kosmonauten3114, Jun 2, 2025, 4:05 PM

Let $\triangle{ABC}$ be a scalene oblique triangle with circumcenter $O$ and orthocenter $H$, and $P$ ($\neq \text{X(3), X(4)}$, $\notin \odot(ABC)$) a point in the plane.
Let $\triangle{A_1B_1C_1}$, $\triangle{A_2B_2C_2}$ be the circumcevian triangles of $O$, $P$, respectively.
Let $\triangle{P_AP_BP_C}$ be the pedal triangle of $P$ with respect to $\triangle{ABC}$.
Let $A_1'$ be the reflection in $P_A$ of $A_1$. Define $B_1'$, $C_1'$ cyclically.
Let $A_2'$ be the reflection in $P_A$ of $A_2$. Define $B_2'$, $C_2'$ cyclically.
Let $O_1$, $O_2$ be the circumcenters of $\triangle{A_1'B_1'C_1'}$, $\triangle{A_2'B_2'C_2'}$, respectively.

Prove that:
1) $P$, $O_1$, $O_2$ are collinear if and only if $P$ lies on the Jerabek hyperbola of $\triangle{ABC}$.
2) $H$, $O_1$, $O_2$ are collinear if and only if $P$ lies on the Lemoine cubic (= $\text{K009}$) of $\triangle{ABC}$.
Attachments:

S(an) greater than S(n)

by ilovemath0402, Jun 2, 2025, 3:23 PM

Find all positive integer $n$ such that $S(an)\ge S(n) \quad \forall a \in \mathbb{Z}^{+}$ ($S(n)$ is sum of digit of $n$ in base 10)
P/s: Original problem

Parallel lines on a rhombus

by buratinogigle, Jun 2, 2025, 3:17 PM

Given the rhombus $ABCD$ with its incircle $\omega$. Let $E$ and $F$ be the points of tangency of $\omega$ with $AB$ and $AC$ respectively. On the edges $CB$ and $CD$, take points $G$ and $H$ such that $GH$ is tangent to $\omega$ at $P$. Suppose $Q$ is the intersection point of the lines $EG$ and $FH$. Prove that two lines $AP$ and $CQ$ are parallel or coincide.
Attachments:

Line bisects a segment

by buratinogigle, Jun 2, 2025, 3:08 PM

Let $ABC$ be a triangle with $AB = AC$. A circle $(O)$ is tangent to sides $AC$ and $AB$, and $O$ is the midpoint of $BC$. Points $E$ and $F$ lie on sides $AC$ and $AB$, respectively, such that segment $EF$ is tangent to circle $(O)$ at point $P$. Let $H$ and $K$ be the orthocenters of triangles $OBF$ and $OCE$, respectively. Prove that line $OP$ bisects segment $HK$.
Attachments:

FE inequality from Iran

by mojyla222, Apr 19, 2025, 9:20 AM

Tangency of circles with "135 degree" angles

by Shayan-TayefehIR, May 19, 2024, 3:50 PM

For a triangle $\triangle ABC$ with an obtuse angle $\angle A$ , let $E , F$ be feet of altitudes from $B , C$ on sides $AC , AB$ respectively. The tangents from $B , C$ to circumcircle of triangle $\triangle ABC$ intersect line $EF$ at points $K , L$ respectively and we know that $\angle CLB=135$. Point $R$ lies on segment $BK$ in such a way that $KR=KL$ and let $S$ be a point on line $BK$ such that $K$ is between $B , S$ and $\angle BLS=135$. Prove that the circle with diameter $RS$ is tangent to circumcircle of triangle $\triangle ABC$.

Proposed by Mehran Talaei
This post has been edited 2 times. Last edited by Shayan-TayefehIR, May 27, 2024, 10:11 AM

Removing Numbers On A Blackboard

by Kezer, Aug 7, 2017, 9:43 PM

The numbers $1,2,3,\dots,2017$ are on the blackboard. Amelie and Boris take turns removing one of those until only two numbers remain on the board. Amelie starts. If the sum of the last two numbers is divisible by $8$, then Amelie wins. Else Boris wins. Who can force a victory?
This post has been edited 1 time. Last edited by Kezer, Aug 7, 2017, 9:45 PM

Orthocenter lies on circumcircle

by whatshisbucket, Jun 26, 2017, 7:03 AM

Let $ABC$ be a triangle with orthocenter $H,$ and let $M$ be the midpoint of $\overline{BC}.$ Suppose that $P$ and $Q$ are distinct points on the circle with diameter $\overline{AH},$ different from $A,$ such that $M$ lies on line $PQ.$ Prove that the orthocenter of $\triangle APQ$ lies on the circumcircle of $\triangle ABC.$

Proposed by Michael Ren

Polish MO Finals 2014, Problem 4

by j___d, Jul 27, 2016, 10:11 PM

Denote the set of positive rational numbers by $\mathbb{Q}_{+}$. Find all functions $f: \mathbb{Q}_{+}\rightarrow \mathbb{Q}_{+}$ that satisfy
$$\underbrace{f(f(f(\dots f(f}_{n}(q))\dots )))=f(nq)$$for all integers $n\ge 1$ and rational numbers $q>0$.

Incenter perpendiculars and angle congruences

by math154, Jul 2, 2012, 3:13 AM

$ABC$ is a triangle with incenter $I$. The foot of the perpendicular from $I$ to $BC$ is $D$, and the foot of the perpendicular from $I$ to $AD$ is $P$. Prove that $\angle BPD = \angle DPC$.

Alex Zhu.

Stay insane,Coz it's your will, labour and pain,which takes you to the top of the mountain.

avatar

utkarshgupta
Archives
- September 2017
+ September 2016
+ July 2016
+ December 2015
+ August 2015
+ December 2014
Shouts
Submit
  • Here goes first post of 2025! Great blog.

    by math_holmes15, Jan 14, 2025, 8:53 AM

  • First post of 2024

    by Yiyj1, Feb 8, 2024, 5:40 AM

  • First post of 2023

    by HoRI_DA_GRe8, Jul 22, 2023, 7:45 AM

  • Nice blog ! Your isogonality lemma is really powerful !

    by 554183, Oct 14, 2021, 8:55 AM

  • Post plss....

    by samrocksnature, Apr 11, 2021, 10:12 PM

  • alas,this is ded

    by Hamroldt, Mar 18, 2021, 4:13 PM

  • Thanks for the nice blog.

    by Feridimo, Mar 6, 2020, 4:17 PM

  • I think this might be silly but ... when should we expect to have another post ?? I am very keen to see it :D

    by gamerrk1004, Nov 4, 2019, 4:54 PM

  • Let's all echo what's written in the blog description - Stay Insane / 'Cause it's your labor, will and pain/ That takes you to the top of soda fountain :D

    by Kayak, Oct 2, 2017, 7:18 PM

  • hey utkarsh jee is over now ... continue your elementary blog pleaseeeeeee!

    by kk108, Jun 17, 2017, 11:19 AM

  • Congrats on becoming a contest moderator!

    by Ankoganit, Mar 9, 2017, 5:22 AM

  • INTERSTING BLOG

    by kk108, Feb 19, 2017, 2:04 PM

  • I have no plans for this blog right now....
    No time here people !
    But lets see....
    I may try some combinatorics :P

    by utkarshgupta, Feb 15, 2017, 12:47 PM

  • Thanks for the nice blog!

    by Orkhan-Ashraf_2002, Feb 13, 2017, 6:34 PM

  • Revive it!!!
    Best blog out there, for sure!

    by rmtf1111, Jan 12, 2017, 6:02 PM

48 shouts
Tags
About Owner
  • Posts: 2280
  • Joined: Jan 4, 2013
Blog Stats
  • Blog created: Nov 30, 2013
  • Total entries: 86
  • Total visits: 40534
  • Total comments: 102
Search Blog
a