Join our free webinar April 22 to learn about competitive programming!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
bracelets
pythagorazz   4
N 28 minutes ago by DDCN_2011
Kat designs circular bead bracelets for kids. Each bracelet has 5 beads, all of which are either yellow or green. If beads of the same color are identical, how many distinct bracelets could Kat make?
4 replies
pythagorazz
Apr 14, 2025
DDCN_2011
28 minutes ago
1234th Post!
PikaPika999   135
N 39 minutes ago by aok
I hit my 1234th post! (I think I missed it, I'm kinda late, :oops_sign:)

But here's a puzzle for you all! Try to create the numbers 1 through 25 using the numbers 1, 2, 3, and 4! You are only allowed to use addition, subtraction, multiplication, division, and parenthesis. If you're post #1, try to make 1. If you're post #2, try to make 2. If you're post #3, try to make 3, and so on. If you're a post after 25, then I guess you can try to make numbers greater than 25 but you can use factorials, square roots, and that stuff. Have fun!

1: $(4-3)\cdot(2-1)$
135 replies
PikaPika999
Yesterday at 8:54 PM
aok
39 minutes ago
trolling geometry problem
iStud   3
N an hour ago by iStud
Source: Monthly Contest KTOM April P3 Essay
Given a cyclic quadrilateral $ABCD$ with $BC<AD$ and $CD<AB$. Lines $BC$ and $AD$ intersect at $X$, and lines $CD$ and $AB$ intersect at $Y$. Let $E,F,G,H$ be the midpoints of sides $AB,BC,CD,DA$, respectively. Let $S$ and $T$ be points on segment $EG$ and $FH$, respectively, so that $XS$ is the angle bisector of $\angle{DXA}$ and $YT$ is the angle bisector of $\angle{DYA}$. Prove that $TS$ is parallel to $BD$ if and only if $AC$ divides $ABCD$ into two triangles with equal area.
3 replies
iStud
6 hours ago
iStud
an hour ago
Website to learn math
hawa   37
N an hour ago by KangarooPrecise
Hi, I'm kinda curious what website do yall use to learn math, like i dont find any website thats fun to learn math
37 replies
hawa
Apr 9, 2025
KangarooPrecise
an hour ago
3D geometry theorem
KAME06   1
N an hour ago by mathuz
Let $M$ a point in the space and $G$ the centroid of a tetrahedron $ABCD$. Prove that:
$$\frac{1}{4}(AB^2+AC^2+AD^2+BC^2+BD^2+CD^2)+4MG^2=MA^2+MB^2+MC^2+MD^2$$
1 reply
KAME06
5 hours ago
mathuz
an hour ago
2025 MATHCOUNTS State Hub
SirAppel   589
N an hour ago by CXP
Previous Years' "Hubs": (2022) (2023) (2024)Please Read

Now that it's April and we're allowed to discuss ...
[list=disc]
[*] CA: 43 (45 44 43 43 43 42 42 41 41 41)
[*] NJ: 43 (45 44 44 43 39 42 40 40 39 38) *
[*] NY: 42 (43 42 42 42 41 40)
[*] TX: 42 (43 43 43 42 42 40 40 38 38 38)
[*] MA: 41 (45 43 42 41)
[*] WA: 41 (41 45 42 41 41 41 41 41 41 40) *
[*]VA: 40 (41 40 40 40)
[*] FL: 39 (42 41 40 39 38 37 37)
[*] IN: 39 (41 40 40 39 36 35 35 35 34 34)
[*] NC: 39 (42 42 41 39)
[*] IL: 38 (41 40 39 38 38 38)
[*] OR: 38 (44 39 38 38)
[*] PA: 38 (41 40 40 38 38 37 36 36 34 34) *
[*] MD: 37 (43 39 39 37 37 37)
[*] AZ: 36 (40? 39? 39 36)
[*] CT: 36 (44 38 38 36 34? 34? 34 34 34 33 33)
[*] MI: 36 (39 41 41 36 37 37 36 36 36 36) *
[*] MN: 36 (40 36 36 36 35 35 35 34)
[*] CO: 35 (41 37 37 35 35 35 ?? 31 31 30) *
[*] GA: 35 (38 37 36 35 34 34 34 34 34 33)
[*] OH: 35 (41 37 36 35)
[*] AR: 34 (46 45 35 34 33 31 31 31 29 29)
[*] NV: 34 (41 38 ?? 34)
[*] TN: 34 (38 ?? ?? 34)
[*] WI: 34 (40 37 37 34 35 30 28 29 29 29) *
[*] HI: 32 (35 34 32 32)
[*] NH: 31 (42 35 33 31 30)
[*] DE: 30 (34 33 32 30 30 29 28 27 26? 24)
[*] SC: 30 (33 33 31 30)
[*] IA: 29 (33 30 31 29 29 29 29 29 29 29 29 29) *
[*] NE: 28 (34 30 28 28 27 27 26 26 25 25)
[*] SD: 22 (30 29 24 22 22 22 21 21 20 20)
[/list]
Cutoffs Unknown

* means that CDR is official in that state.

Notes

For those asking about the removal of the tiers, I'd like to quote Jason himself:
[quote=peace09]
learn from my mistakes
[/quote]

Help contribute by sharing your state's cutoffs!
589 replies
SirAppel
Apr 1, 2025
CXP
an hour ago
IMO Shortlist 2012, Number Theory 6
mathmdmb   42
N 2 hours ago by ihategeo_1969
Source: IMO Shortlist 2012, Number Theory 6
Let $x$ and $y$ be positive integers. If ${x^{2^n}}-1$ is divisible by $2^ny+1$ for every positive integer $n$, prove that $x=1$.
42 replies
mathmdmb
Jul 26, 2013
ihategeo_1969
2 hours ago
GCD of a sequence
oVlad   7
N 3 hours ago by grupyorum
Source: Romania EGMO TST 2017 Day 1 P2
Determine all pairs $(a,b)$ of positive integers with the following property: all of the terms of the sequence $(a^n+b^n+1)_{n\geqslant 1}$ have a greatest common divisor $d>1.$
7 replies
oVlad
Yesterday at 1:35 PM
grupyorum
3 hours ago
Another System
worthawholebean   3
N 4 hours ago by P162008
Source: HMMT 2008 Guts Problem 33
Let $ a$, $ b$, $ c$ be nonzero real numbers such that $ a+b+c=0$ and $ a^3+b^3+c^3=a^5+b^5+c^5$. Find the value of
$ a^2+b^2+c^2$.
3 replies
worthawholebean
May 13, 2008
P162008
4 hours ago
Inequality with three conditions
oVlad   2
N 4 hours ago by Quantum-Phantom
Source: Romania EGMO TST 2019 Day 1 P3
Let $a,b,c$ be non-negative real numbers such that \[b+c\leqslant a+1,\quad c+a\leqslant b+1,\quad a+b\leqslant c+1.\]Prove that $a^2+b^2+c^2\leqslant 2abc+1.$
2 replies
oVlad
Yesterday at 1:48 PM
Quantum-Phantom
4 hours ago
GCD Functional Equation
pinetree1   61
N 4 hours ago by ihategeo_1969
Source: USA TSTST 2019 Problem 7
Let $f: \mathbb Z\to \{1, 2, \dots, 10^{100}\}$ be a function satisfying
$$\gcd(f(x), f(y)) = \gcd(f(x), x-y)$$for all integers $x$ and $y$. Show that there exist positive integers $m$ and $n$ such that $f(x) = \gcd(m+x, n)$ for all integers $x$.

Ankan Bhattacharya
61 replies
pinetree1
Jun 25, 2019
ihategeo_1969
4 hours ago
An easy FE
oVlad   3
N 4 hours ago by jasperE3
Source: Romania EGMO TST 2017 Day 1 P3
Determine all functions $f:\mathbb R\to\mathbb R$ such that \[f(xy-1)+f(x)f(y)=2xy-1,\]for any real numbers $x{}$ and $y{}.$
3 replies
oVlad
Yesterday at 1:36 PM
jasperE3
4 hours ago
p^3 divides (a + b)^p - a^p - b^p
62861   49
N 4 hours ago by Ilikeminecraft
Source: USA January TST for IMO 2017, Problem 3
Prove that there are infinitely many triples $(a, b, p)$ of positive integers with $p$ prime, $a < p$, and $b < p$, such that $(a + b)^p - a^p - b^p$ is a multiple of $p^3$.

Noam Elkies
49 replies
62861
Feb 23, 2017
Ilikeminecraft
4 hours ago
Funny easy transcendental geo
qwerty123456asdfgzxcvb   1
N 5 hours ago by golue3120
Let $\mathcal{S}$ be a logarithmic spiral centered at the origin (ie curve satisfying for any point $X$ on it, line $OX$ makes a fixed angle with the tangent to $\mathcal{S}$ at $X$). Let $\mathcal{H}$ be a rectangular hyperbola centered at the origin, scaled such that it is tangent to the logarithmic spiral at some point.

Prove that for a point $P$ on the spiral, the polar of $P$ wrt. $\mathcal{H}$ is tangent to the spiral.
1 reply
1 viewing
qwerty123456asdfgzxcvb
Yesterday at 7:23 PM
golue3120
5 hours ago
Questions about dividing by 0
Arr0w   28
N Nov 15, 2024 by b2025tyx
I have a couple of questions all of which have to do with dividing by 0. Thanks in advance.
1
2
3
4
5
28 replies
Arr0w
Dec 2, 2020
b2025tyx
Nov 15, 2024
Questions about dividing by 0
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Arr0w
2908 posts
#1 • 2 Y
Y by mobro, DDCN_2011
I have a couple of questions all of which have to do with dividing by 0. Thanks in advance.
1
2
3
4
5
This post has been edited 1 time. Last edited by Arr0w, Dec 2, 2020, 5:02 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Math2k06
148 posts
#2 • 3 Y
Y by Mango247, Mango247, Mango247
$1/0$ is not a number.For #3, since anything times $0$ is $0$, the answer should be $0$.

Tldr don't poke into questions including $0$ and division. You will open a parallel univeerse
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aaja3427
1918 posts
#3
Y by
S2

@above that wouldn't be true since you are multiplying by undefined. Anything to do with undefined is undefined.
This post has been edited 1 time. Last edited by aaja3427, Dec 2, 2020, 5:08 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mop
4053 posts
#4
Y by
Undefined numbers are a class of their own. Thus, they cannot be used with real or imaginary numbers without creating an undefined result.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cubingsoda
19220 posts
#5 • 3 Y
Y by Mango247, Mango247, Mango247
see this video

He divides $a - b$ but since $a=b$ he divides by $0$. He gets $1=2$!

Dividing by $0$ opens the black hole
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
correcthorsebatterystaple
620 posts
#6
Y by
Yeah, there are a couple of constructs in higher maths which assign a value to 1/0 (sort of like $i$) but you have to bend the rules of arithmetic a bit and what's going on here (1-3) is definitely not that. They're not that useful, either. We leave 1/0 undefined most of the time, similar to how you would say "no solutions" if you were asked to solve $x^2=-1$ over $\mathbb{R}.$ (to answer 5)

An "undefined value" has no numerical value; I think even calling it a "value" in the first place is a bit of a misnomer.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ihatemath123
3443 posts
#7
Y by
S4
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cubingsoda
19220 posts
#8
Y by
undefined = no answer so no solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SteindorfStrongGirl
116 posts
#9
Y by
i made a presentation on this at school :< its something about 1≠2
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Awesome_Twin1
745 posts
#12
Y by
1. Avoid double posting
2. Don't bump this thread. Just look at A Letter to MSM which has been pinned.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
A_MatheMagician
2251 posts
#13
Y by
please read this post first
sry @above sniped me
This post has been edited 1 time. Last edited by A_MatheMagician, Dec 14, 2023, 1:45 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vrondoS
163 posts
#14
Y by
In some ways, you can think $\frac{1}{0}=\infty$. This isn't rigorous, however, because then $\frac{2}{0}=2\infty=\infty$. Thinking about it this way can help explain some of the questions you had.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
A_MatheMagician
2251 posts
#16
Y by
Post #14 by vrondoS
infinity is not a value
that does not make any sense
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ZekeMath
42 posts
#17
Y by
If it's undefined, eventually somebody will define it :) I say better now than later.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Yummo
296 posts
#18
Y by
Awesome_Twin1 wrote:
1. Avoid double posting
2. Don't bump this thread. Just look at A Letter to MSM which has been pinned.
A_MatheMagician wrote:
please read this post first
sry @above sniped me

Do you realize who posted that? @Arr0w, I thought you left AoPS a while ago.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathboy282
2989 posts
#20
Y by
vrondoS wrote:
In some ways, you can think $\frac{1}{0}=\infty$. This isn't rigorous, however, because then $\frac{2}{0}=2\infty=\infty$. Thinking about it this way can help explain some of the questions you had.

I would argue that this isn't true. $1/0 is undefined.$ The limit of it also does not exist, because:
$\lim_{x->0^+}\frac1x = +\infty$
but also:
$\lim_{x->0^-} \frac1x = -\infty$
This post has been edited 2 times. Last edited by mathboy282, Dec 14, 2023, 3:33 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JoyfulSapling
822 posts
#21
Y by
Arr0w wrote:
I have a couple of questions all of which have to do with dividing by 0. Thanks in advance.
1
2
3
4
5

Solutions:
1
2
3
4
5
This post has been edited 4 times. Last edited by JoyfulSapling, Mar 14, 2024, 2:33 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MathPerson12321
3706 posts
#22
Y by
I would think a variable like b would be defined as $\frac{1}{0}$, similar to $i$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
the_mathmagician
467 posts
#23
Y by
Note: defining a number like $b=\frac{1}{0}$ serves no purpose. Why did we define $i$? Because we created the quadratic formula and realized that we couldn't describe the full range of solutions. Plus, we found something called casus irreducibilis, in which we found that describing a root of a cubic that was a real number required the use of imaginary numbers. After we accepted that we found a lot of useful other things to do with complex numbers. As for with "$b$", it serves no purpose. What can we do with this? There's nothing we can do with it. Actually, all it does is completely break our current framework of math.

Edit: Also, read this by the OP, written a few years later. It's an announcement but MSM unfortunately isn't known for paying attention to those ;)
This post has been edited 2 times. Last edited by the_mathmagician, Mar 14, 2024, 4:10 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
yummy-yum10-2021
95 posts
#24
Y by
Arr0w wrote:
Greetings.

I have seen many posts talking about commonly asked questions, such as finding the value of $0^0$, $\frac{1}{0}$,$\frac{0}{0}$, $\frac{\infty}{\infty}$, why $0.999...=1$ or even expressions of those terms combined as if that would make them defined. I have made this post to answer these questions once and for all, and I politely ask everyone to link this post to threads that are talking about this issue.
[...]
What about $\frac{1}{0}$? Suppose that $x=\frac{1}{0}$. Then we would have $x\cdot 0=0=1$, absurd. A more rigorous treatment of the idea is that $\lim_{x\to0}\frac{1}{x}$ does not exist in the first place, although you will see why in a calculus course. So the point is that $\frac{1}{0}$ is undefined.
[...]
What about $\frac{0}{0}$? Usually this is considered to be an indeterminate form, but I would also wager that this is also undefined.
[...]
INDETERMINATE VS UNDEFINED

What makes something indeterminate? As you can see above, there are many things that are indeterminate. While definitions might vary slightly, it is the consensus that the following definition holds: A mathematical expression is be said to be indeterminate if it is not definitively or precisely determined. So how does this make, say, something like $0/0$ indeterminate? In analysis (the theory behind calculus and beyond), limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits. However, if the expression obtained after this substitution does not provide sufficient information to determine the original limit, then the expression is called an indeterminate form. For example, we could say that $0/0$ is an indeterminate form.

But we need to more specific, this is still ambiguous. An indeterminate form is a mathematical expression involving at most two of $0$, $1$ or $\infty$, obtained by applying the algebraic limit theorem (a theorem in analysis, look this up for details) in the process of attempting to determine a limit, which fails to restrict that limit to one specific value or infinity, and thus does not determine the limit being calculated. This is why it is called indeterminate. Some examples of indeterminate forms are
\[0/0, \infty/\infty, \infty-\infty, \infty \times 0\]etc etc. So what makes something undefined? In the broader scope, something being undefined refers to an expression which is not assigned an interpretation or a value. A function is said to be undefined for points outside its domain. For example, the function $f:\mathbb{R}^{+}\cup\{0\}\rightarrow\mathbb{R}$ given by the mapping $x\mapsto \sqrt{x}$ is undefined for $x<0$. On the other hand, $1/0$ is undefined because dividing by $0$ is not defined in arithmetic by definition. In other words, something is undefined when it is not defined in some mathematical context.


Full post: A Letter to MSN
This post has been edited 1 time. Last edited by yummy-yum10-2021, Nov 11, 2024, 3:41 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
greenplanet2050
1312 posts
#25
Y by
yummy-yum10-2021 wrote:
Arr0w wrote:
Greetings.

I have seen many posts talking about commonly asked questions, such as finding the value of $0^0$, $\frac{1}{0}$,$\frac{0}{0}$, $\frac{\infty}{\infty}$, why $0.999...=1$ or even expressions of those terms combined as if that would make them defined. I have made this post to answer these questions once and for all, and I politely ask everyone to link this post to threads that are talking about this issue.
[...]
What about $\frac{1}{0}$? Suppose that $x=\frac{1}{0}$. Then we would have $x\cdot 0=0=1$, absurd. A more rigorous treatment of the idea is that $\lim_{x\to0}\frac{1}{x}$ does not exist in the first place, although you will see why in a calculus course. So the point is that $\frac{1}{0}$ is undefined.
[...]
What about $\frac{0}{0}$? Usually this is considered to be an indeterminate form, but I would also wager that this is also undefined.
[...]
INDETERMINATE VS UNDEFINED

What makes something indeterminate? As you can see above, there are many things that are indeterminate. While definitions might vary slightly, it is the consensus that the following definition holds: A mathematical expression is be said to be indeterminate if it is not definitively or precisely determined. So how does this make, say, something like $0/0$ indeterminate? In analysis (the theory behind calculus and beyond), limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits. However, if the expression obtained after this substitution does not provide sufficient information to determine the original limit, then the expression is called an indeterminate form. For example, we could say that $0/0$ is an indeterminate form.

But we need to more specific, this is still ambiguous. An indeterminate form is a mathematical expression involving at most two of $0$, $1$ or $\infty$, obtained by applying the algebraic limit theorem (a theorem in analysis, look this up for details) in the process of attempting to determine a limit, which fails to restrict that limit to one specific value or infinity, and thus does not determine the limit being calculated. This is why it is called indeterminate. Some examples of indeterminate forms are
\[0/0, \infty/\infty, \infty-\infty, \infty \times 0\]etc etc. So what makes something undefined? In the broader scope, something being undefined refers to an expression which is not assigned an interpretation or a value. A function is said to be undefined for points outside its domain. For example, the function $f:\mathbb{R}^{+}\cup\{0\}\rightarrow\mathbb{R}$ given by the mapping $x\mapsto \sqrt{x}$ is undefined for $x<0$. On the other hand, $1/0$ is undefined because dividing by $0$ is not defined in arithmetic by definition. In other words, something is undefined when it is not defined in some mathematical context.


Full post: A Letter to MSN
There’s no need to bump this thread.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vincentwant
1323 posts
#26
Y by
me when the person who posted this is the same person who posted a letter to msm:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Turtle09
1812 posts
#27
Y by
vincentwant wrote:
me when the person who posted this is the same person who posted a letter to msm:

this is crazy lol
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sadas123
1231 posts
#28
Y by
honestly I think that 1/0 is infinity because if you graph this on a graphing calculator it looks like this and you can see the largest red line is when you divide with 0 and if you do it with a smaller number with 1 which I will also include makes it a very large slope change, which looks like it is going to infinity.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
club52
724 posts
#29
Y by
@above it goes to both positive and negative infinity.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
b2025tyx
1464 posts
#30
Y by
Sol 4
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
blimpo
801 posts
#31
Y by
I would like to point out that undefined and infinity are not numbers, but definitions. So you can't say "x is equal to infinity" or "when dividing this by undefined"
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Catcumber
162 posts
#32
Y by
guys stop bumping this thread... its 4 years old
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
b2025tyx
1464 posts
#33
Y by
Catcumber wrote:
guys stop bumping this thread... its 4 years old

Whoops, forgot to check that
Z K Y
N Quick Reply
G
H
=
a