Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Geometry
German_bread   2
N 8 minutes ago by German_bread
Let P be a point in a square ABCD. The lengths of segments PA, PB, PC are 17, 11 and 5 respectively. Determine the area of the square and if it can’t be determined exactly, all possible values are to be listed.

German math Olympiad, Class 9, 2024

It’s my first time posting - please excuse any mistakes
2 replies
German_bread
Yesterday at 7:59 PM
German_bread
8 minutes ago
Inequalities
sqing   11
N 11 minutes ago by sqing
Let $   a,b    $ be reals such that $  a^2+ab+b^2 =3$ . Prove that
$$ \frac{4}{ 3}\geq \frac{1}{ a^2+5 }+ \frac{1}{ b^2+5 }+ab \geq -\frac{11}{4 }$$$$ \frac{13}{ 4}\geq \frac{1}{ a^2+5 }+ \frac{1}{ b^2+5 }+ab \geq -\frac{2}{3 }$$$$ \frac{3}{ 2}\geq  \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }+ab \geq -\frac{17}{6 }$$$$ \frac{19}{ 6}\geq  \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }-ab \geq -\frac{1}{2}$$Let $   a,b    $ be reals such that $  a^2-ab+b^2 =1 $ . Prove that
$$ \frac{3}{ 2}\geq \frac{1}{ a^2+3 }+ \frac{1}{ b^2+3 }+ab \geq \frac{4}{15 }$$$$ \frac{14}{ 15}\geq \frac{1}{ a^2+3 }+ \frac{1}{ b^2+3 }-ab \geq -\frac{1}{2 }$$$$ \frac{3}{ 2}\geq \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }+ab \geq \frac{13}{42 }$$$$ \frac{41}{ 42}\geq \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }-ab \geq -\frac{1}{2 }$$
11 replies
+1 w
sqing
Apr 16, 2025
sqing
11 minutes ago
Combinatorics
TUAN2k8   0
17 minutes ago
A sequence of integers $a_1,a_2,...,a_k$ is call $k-balanced$ if it satisfies the following properties:
$i) a_i \neq a_j$ and $a_i+a_j \neq 0$ for all indices $i \neq j$.
$ii) \sum_{i=1}^{k} a_i=0$.
Find the smallest integer $k$ for which: Every $k-balanced$ sequence, there always exist two terms whose diffence is not less than $n$. (where $n$ is given positive integer)
0 replies
TUAN2k8
17 minutes ago
0 replies
pqr/uvw convert
Nguyenhuyen_AG   4
N 19 minutes ago by SunnyEvan
Source: https://github.com/nguyenhuyenag/pqr_convert
Hi everyone,
As we know, the pqr/uvw method is a powerful and useful tool for proving inequalities. However, transforming an expression $f(a,b,c)$ into $f(p,q,r)$ or $f(u,v,w)$ can sometimes be quite complex. That's why I’ve written a program to assist with this process.
I hope you’ll find it helpful!

Download: pqr_convert

Screenshot:
IMAGE
IMAGE
4 replies
+1 w
Nguyenhuyen_AG
5 hours ago
SunnyEvan
19 minutes ago
A nice lemma about incircle and his internal tangent
manlio   0
19 minutes ago
Have you a nice proof for this lemma?
Thnak you very much
0 replies
manlio
19 minutes ago
0 replies
Nice problem about a trapezoid
manlio   0
22 minutes ago
Have you a nice solution for this problem?
Thank you very much
0 replies
manlio
22 minutes ago
0 replies
IHC 10 Q25: Eight countries participated in a football tournament
xytan0585   0
22 minutes ago
Source: International Hope Cup Mathematics Invitational Regional Competition IHC10
Eight countries sent teams to participate in a football tournament, with the Argentine and Brazilian teams being the strongest, while the remaining six teams are similar strength. The probability of the Argentine and Brazilian teams winning against the other six teams is both $\frac{2}{3}$. The tournament adopts an elimination system, and the winner advances to the next round. What is the probability that the Argentine team will meet the Brazilian team in the entire tournament?

$A$. $\frac{1}{4}$

$B$. $\frac{1}{3}$

$C$. $\frac{23}{63}$

$D$. $\frac{217}{567}$

$E$. $\frac{334}{567}$
0 replies
xytan0585
22 minutes ago
0 replies
Inspired by learningimprove
sqing   3
N 25 minutes ago by sqing
Source: Own
Let $ a,b,c,d\geq0, (a+b)(c+d)=2 . $ Prove that
$$  a^2+b^2+c^2+d^2-ac-bd \geq1 $$Let $ a,b,c,d\geq0, (a+2b)(c+2d)=2 . $ Prove that
$$  a^2+b^2+c^2+d^2-ac-bd \geq\frac{2}{5} $$Let $ a,b,c,d\geq0, (a+2b)(2c+ d)=2 . $ Prove that
$$  a^2+b^2+c^2+d^2-ac-bd \geq\frac{3}{7} $$
3 replies
sqing
an hour ago
sqing
25 minutes ago
A Loggy Problem from Pythagoras
Mathzeus1024   6
N 39 minutes ago by Mathzeus1024
Prove or disprove: $\exists x \in \mathbb{R}^{+}$ such that $\ln(x), \ln(2x), \ln(3x)$ are the lengths of a right triangle.
6 replies
Mathzeus1024
Yesterday at 10:55 AM
Mathzeus1024
39 minutes ago
Indonesia Regional MO 2019 Part A
parmenides51   20
N an hour ago by Mr.Awan
Indonesia Regional MO
Year 2019 Part A

Time: 90 minutes Rules


p1. In the bag there are $7$ red balls and $8$ white balls. Audi took two balls at once from inside the bag. The chance of taking two balls of the same color is ...


p2. Given a regular hexagon with a side length of $1$ unit. The area of the hexagon is ...


p3. It is known that $r, s$ and $1$ are the roots of the cubic equation $x^3 - 2x + c = 0$. The value of $(r-s)^2$ is ...


p4. The number of pairs of natural numbers $(m, n)$ so that $GCD(n,m) = 2$ and $LCM(m,n) = 1000$ is ...


p5. A data with four real numbers $2n-4$, $2n-6$, $n^2-8$, $3n^2-6$ has an average of $0$ and a median of $9/2$. The largest number of such data is ...


p6. Suppose $a, b, c, d$ are integers greater than $2019$ which are four consecutive quarters of an arithmetic row with $a <b <c <d$. If $a$ and $d$ are squares of two consecutive natural numbers, then the smallest value of $c-b$ is ...


p7. Given a triangle $ABC$, with $AB = 6$, $AC = 8$ and $BC = 10$. The points $D$ and $E$ lies on the line segment $BC$. with $BD = 2$ and $CE = 4$. The measure of the angle $\angle DAE$ is ...


p8. Sequqnce of real numbers $a_1,a_2,a_3,...$ meet $\frac{na_1+(n-1)a_2+...+2a_{n-1}+a_n}{n^2}=1$ for each natural number $n$. The value of $a_1a_2a_3...a_{2019}$ is ....


p9. The number of ways to select four numbers from $\{1,2,3, ..., 15\}$ provided that the difference of any two numbers at least $3$ is ...


p10. Pairs of natural numbers $(m , n)$ which satisfies $$m^2n+mn^2 +m^2+2mn = 2018m + 2019n + 2019$$are as many as ...


p11. Given a triangle $ABC$ with $\angle ABC =135^o$ and $BC> AB$. Point $D$ lies on the side $BC$ so that $AB=CD$. Suppose $F$ is a point on the side extension $AB$ so that $DF$ is perpendicular to $AB$. The point $E$ lies on the ray $DF$ such that $DE> DF$ and $\angle ACE = 45^o$. The large angle $\angle AEC$ is ...


p12. The set of $S$ consists of $n$ integers with the following properties: For every three different members of $S$ there are two of them whose sum is a member of $S$. The largest value of $n$ is ....


p13. The minimum value of $\frac{a^2+2b^2+\sqrt2}{\sqrt{ab}}$ with $a, b$ positive reals is ....


p14. The polynomial P satisfies the equation $P (x^2) = x^{2019} (x+ 1) P (x)$ with $P (1/2)= -1$ is ....


p15. Look at a chessboard measuring $19 \times 19$ square units. Two plots are said to be neighbors if they both have one side in common. Initially, there are a total of $k$ coins on the chessboard where each coin is only loaded exactly on one square and each square can contain coins or blanks. At each turn. You must select exactly one plot that holds the minimum number of coins in the number of neighbors of the plot and then you must give exactly one coin to each neighbor of the selected plot. The game ends if you are no longer able to select squares with the intended conditions. The smallest number of $k$ so that the game never ends for any initial square selection is ....
20 replies
parmenides51
Nov 11, 2021
Mr.Awan
an hour ago
Same radius geo
ThatApollo777   0
an hour ago
Source: Own
Classify all possible quadrupes of $4$ distinct points in a plane such the circumradius of any $3$ of them is the same.
0 replies
ThatApollo777
an hour ago
0 replies
Inspired by old results
sqing   4
N an hour ago by sqing
Source: Own
Let $ a,b>0. $ Prove that
$$\frac{(a+1)^2}{b}+\frac{(b+k)^2}{a} \geq4(k+1) $$Where $ k\geq 0. $
$$\frac{a^2}{b}+\frac{(b+1)^2}{a} \geq4$$
4 replies
sqing
6 hours ago
sqing
an hour ago
Help with math problem
Glist   0
2 hours ago
1. The infinite Morse sequence of zeros and ones, 011010011001..., is constructed as follows: start with 0, then at each step, append a block of the same length as the current sequence, obtained by replacing 0 with 1 and vice versa in the existing block. Is this sequence periodic?
2. On an infinite (two-way) tape, a text in Russian is written. It is known that in this text, the number of distinct 15-symbol blocks is equal to the number of distinct 16-symbol blocks. Prove that the text on the tape is periodic in both directions (i.e., bi-infinite and periodic), for example: "...мамамыларамумамамы...".
0 replies
Glist
2 hours ago
0 replies
Math problem
Glist   3
N 2 hours ago by Glist
Given six distinct points on a plane, all pairwise distances between which are different. Prove that there exists a line segment connecting two of these points which is the longest side in one triangle formed by three of the points, and the shortest side in another triangle formed by three of the points.
3 replies
Glist
Yesterday at 2:19 PM
Glist
2 hours ago
System of Equations with GCD
MrHeccMcHecc   2
N Mar 11, 2025 by MrHeccMcHecc
Determine the sum of all possible values of $abc$ where $a,b,c$ are positive integers satisfying the equations $$\begin{cases}
a= \gcd (b,c) + 3 \\
b= \gcd (c,a) + 3 \\
c= \gcd (a,b) + 3 
\end{cases}$$
2 replies
MrHeccMcHecc
Mar 10, 2025
MrHeccMcHecc
Mar 11, 2025
System of Equations with GCD
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MrHeccMcHecc
132 posts
#1
Y by
Determine the sum of all possible values of $abc$ where $a,b,c$ are positive integers satisfying the equations $$\begin{cases}
a= \gcd (b,c) + 3 \\
b= \gcd (c,a) + 3 \\
c= \gcd (a,b) + 3 
\end{cases}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
soryn
5319 posts
#2 • 1 Y
Y by MrHeccMcHecc
Since gcd of any two possible integers is at least 1,then a>=b>=c>=4(wlog ,since a,b,c>=4). Then,we have: a=gcd(b,c)+3<=c+3. 1) If a=c=>a=b=c=>a=gcd(b,c)+3=a+3, false. 2)If a=c+1 =>b=gcd(a,c)+3=4=> c=4, a=5, contradiction,since a=5, but gcd(b,c)+3=7. 3)If a=c+2, and a is odd=> b=gcd(a,c)+3=4, și c=4, and a=c+2=6, contradiction( a îs odd); if a is even, then b=gcd(a,c)+3=5, and a,c are both even=>c=4,a=6, contradiction,since a=6, but gcd(b,c)+3=4. 4) If a=c+3=> b=4 or b=6. If b=4=>c=4, a=7, and (7,4,4) is a valid solution; if b=6, then gcd(b,c)+3=a>=b=6, obtain gcd(b,c)>=3, and this leads to c=6, a=9 => the valid solution is (9,6,6). . Finally,the answer is 7•4•4+9•6•6=436.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MrHeccMcHecc
132 posts
#3
Y by
soryn wrote:
Since gcd of any two possible integers is at least 1,then a>=b>=c>=4(wlog ,since a,b,c>=4). Then,we have: a=gcd(b,c)+3<=c+3. 1) If a=c=>a=b=c=>a=gcd(b,c)+3=a+3, false. 2)If a=c+1 =>b=gcd(a,c)+3=4=> c=4, a=5, contradiction,since a=5, but gcd(b,c)+3=7. 3)If a=c+2, and a is odd=> b=gcd(a,c)+3=4, și c=4, and a=c+2=6, contradiction( a îs odd); if a is even, then b=gcd(a,c)+3=5, and a,c are both even=>c=4,a=6, contradiction,since a=6, but gcd(b,c)+3=4. 4) If a=c+3=> b=4 or b=6. If b=4=>c=4, a=7, and (7,4,4) is a valid solution; if b=6, then gcd(b,c)+3=a>=b=6, obtain gcd(b,c)>=3, and this leads to c=6, a=9 => the valid solution is (9,6,6). . Finally,the answer is 7•4•4+9•6•6=436.


with latex
This post has been edited 1 time. Last edited by MrHeccMcHecc, Mar 11, 2025, 8:58 AM
Z K Y
N Quick Reply
G
H
=
a