G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Harmonic Series and Infinite Sequences
steven_zhang123   1
N 37 minutes ago by flower417477
Source: China TST 2025 P19
Let $\left \{ x_n \right \} _{n\ge 1}$ and $\left \{ y_n \right \} _{n\ge 1}$ be two infinite sequences of integers. Prove that there exists an infinite sequence of integers $\left \{ z_n \right \} _{n\ge 1}$ such that for any positive integer \( n \), the following holds:

\[
\sum_{k|n} k \cdot z_k^{\frac{n}{k}} = \left( \sum_{k|n} k \cdot x_k^{\frac{n}{k}} \right) \cdot \left( \sum_{k|n} k \cdot y_k^{\frac{n}{k}} \right).
\]
1 reply
steven_zhang123
Mar 29, 2025
flower417477
37 minutes ago
A cute FE
Aritra12   10
N an hour ago by jasperE3
Source: own
Hope so not prediscovered

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all reals $x,y,$
$$f(f(x+f(y)))(f(x)+y)=xf(x)+yf(y)+2f(xy)$$Proposed by Aritra12, India

Click to reveal hidden text
Its simple but yet cute acc to me
10 replies
Aritra12
Mar 23, 2021
jasperE3
an hour ago
MathLeague Middle School States Makeup
kamuii   11
N an hour ago by elizhang101412
Is anyone doing the states makeup for Mathleague middle school?
And also, how does qualification to nats work from there? Is it a by state or by grade thing
11 replies
kamuii
Yesterday at 2:31 PM
elizhang101412
an hour ago
possible triangle inequality
sunshine_12   2
N an hour ago by sunshine_12
a, b, c are real numbers
|a| + |b| + |c| − |a + b| − |b + c| − |c + a| + |a + b + c| ≥ 0
hey everyone, so I came across this inequality, and I did make some progress:
Let (a+b), (b+c), (c+a) be three sums T1, T2 and T3. As there are 3 sums, but they can be of only 2 signs, by pigeon hole principle, atleast 2 of the 3 sums must be of the same sign.
But I'm getting stuck on the case work. Can anyone help?
Thnx a lot
2 replies
sunshine_12
Yesterday at 2:12 PM
sunshine_12
an hour ago
x is rational implies y is rational
pohoatza   43
N an hour ago by quantam13
Source: IMO Shortlist 2006, N2, VAIMO 2007, Problem 6
For $ x \in (0, 1)$ let $ y \in (0, 1)$ be the number whose $ n$-th digit after the decimal point is the $ 2^{n}$-th digit after the decimal point of $ x$. Show that if $ x$ is rational then so is $ y$.

Proposed by J.P. Grossman, Canada
43 replies
pohoatza
Jun 28, 2007
quantam13
an hour ago
VERY HARD MATH PROBLEM!
slimshadyyy.3.60   35
N an hour ago by jkim0656
Let a ≥b ≥c ≥0 be real numbers such that a^2 +b^2 +c^2 +abc = 4. Prove that
a+b+c+(√a−√c)^2 ≥3.
35 replies
slimshadyyy.3.60
Saturday at 10:49 PM
jkim0656
an hour ago
Thanks u!
Ruji2018252   2
N an hour ago by sqing
Let $x,y,z,t\in\mathbb{R}$ and $\begin{cases}x^2+y^2=4\\z^2+t^2=9\\xt+yz\geqslant 6\end{cases}$.
$1,$ Prove $xz=yt$
$2,$ Find maximum $P=x+z$
2 replies
Ruji2018252
Yesterday at 11:07 AM
sqing
an hour ago
$$ac=bd$$
sqing   3
N an hour ago by sqing
Source: Own
Let $ a,b,c,d $ be reals such that $  a^2+b^2=4,c^2+d^2=9 $ and $ abcd\ge  9.$ Prove that$$ac=bd$$Let $ a,b,c,d $ be reals such that $  a^2+b^2=4,c^2+d^2=9 $ and $ ad+bc  \ge  6.$ Prove that$$ac=bd$$Let $ a,b,c,d $ be reals such that $  a^2+b^2=4,c^2+d^2=9 $ and $ab+cd \geq \frac{13}{2}.$ Prove that$$ac=bd$$




3 replies
sqing
Yesterday at 2:25 PM
sqing
an hour ago
Question
mathprodigy2011   5
N an hour ago by jkim0656
Can someone help me do this question I am super confused and my answer was wrong.
5 replies
mathprodigy2011
Feb 22, 2025
jkim0656
an hour ago
Inspired by old results
sqing   7
N an hour ago by sqing
Source: Own
Let $ a,b,c > 0 $ and $ a+b+c +abc =4. $ Prove that
$$ a^2 + b^2 + c^2 + 3 \geq 2( ab+bc + ca )$$Let $ a,b,c > 0 $ and $  ab+bc+ca+abc=4. $ Prove that
$$ a^2 + b^2 + c^2 + 2abc \geq  5$$
7 replies
1 viewing
sqing
Mar 27, 2025
sqing
an hour ago
How to see the light
Dream9   16
N an hour ago by jkim0656
My subject is pretty weird but what I mean is the "light" at the end of the "tunnel" (the end of a very long post). For example, the Bogus Proof Marathon. It has like 7k replies and I really can't scroll down 7000 messages so, how do people reach the end of the reply chain? :yoda:
16 replies
Dream9
Mar 28, 2025
jkim0656
an hour ago
aops ids
Bummer12345   76
N 2 hours ago by jkim0656
Make your argument here on why your AoPS user ID is the coolest!!!!! :pilot: :pilot: :pilot: :pilot: :pilot:

For instance, my ID, $573803$, can be written as $547 \cdot 1049$, both which are prime.

$547$ is a cuban prime, prime index prime

$1049$ is a Sophie Germain prime

I think my ID is pretty cool, but theres probably better IDs out there.

stuff
76 replies
Bummer12345
Mar 28, 2025
jkim0656
2 hours ago
USAMO 1995
paul_mathematics   39
N 2 hours ago by Tony_stark0094
Given a nonisosceles, nonright triangle ABC, let O denote the center of its circumscribed circle, and let $A_1$, $B_1$, and $C_1$ be the midpoints of sides BC, CA, and AB, respectively. Point $A_2$ is located on the ray $OA_1$ so that $OAA_1$ is similar to $OA_2A$. Points $B_2$ and $C_2$ on rays $OB_1$ and $OC_1$, respectively, are defined similarly. Prove that lines $AA_2$, $BB_2$, and $CC_2$ are concurrent, i.e. these three lines intersect at a point.
39 replies
paul_mathematics
Dec 31, 2004
Tony_stark0094
2 hours ago
Polynomials and their shift with all real roots and in common
Assassino9931   3
N 2 hours ago by Assassino9931
Source: Bulgaria Spring Mathematical Competition 2025 11.4
We call two non-constant polynomials friendly if each of them has only real roots, and every root of one polynomial is also a root of the other. For two friendly polynomials \( P(x), Q(x) \) and a constant \( C \in \mathbb{R}, C \neq 0 \), it is given that \( P(x) + C \) and \( Q(x) + C \) are also friendly polynomials. Prove that \( P(x) \equiv Q(x) \).
3 replies
Assassino9931
Yesterday at 1:12 PM
Assassino9931
2 hours ago
k NOOOO RIP Richard Ruscyk
nmlikesmath   76
N Mar 27, 2025 by nmlikesmath
richard, thank you for everything, for making this website and creating aops. even though I joined aops relatively recently, there are so many materials and books, and other things that help us all learn, and i think that aops was my most valuable math learning tool. just wanted to say thanks

also just wanted to say that the aops community is probably the most vibrant, widespread, and most enthusiastic people about math ever. like its just amazing

EDIT: guys lets all change our pfps to richards

march 24, 2025 will go down in history as the AoPS Memorial Day, to remember richard and the real ones who made aops
76 replies
nmlikesmath
Mar 27, 2025
nmlikesmath
Mar 27, 2025
NOOOO RIP Richard Ruscyk
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nmlikesmath
461 posts
#1 • 6 Y
Y by jkim0656, DhruvJha, A7456321, Yrock, evt917, Samcharya
richard, thank you for everything, for making this website and creating aops. even though I joined aops relatively recently, there are so many materials and books, and other things that help us all learn, and i think that aops was my most valuable math learning tool. just wanted to say thanks

also just wanted to say that the aops community is probably the most vibrant, widespread, and most enthusiastic people about math ever. like its just amazing

EDIT: guys lets all change our pfps to richards

march 24, 2025 will go down in history as the AoPS Memorial Day, to remember richard and the real ones who made aops
This post has been edited 4 times. Last edited by nmlikesmath, Mar 27, 2025, 2:19 AM
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jkim0656
420 posts
#2
Y by
nmlikesmath wrote:
richard, thank you for everything, for making this website and creating aops. even though I joined aops relatively recently, there are so many materials and books, and other things that help us all learn, and i think that aops was my most valuable math learning tool. just wanted to say thanks

also just wanted to say that the aops community is probably the most vibrant, widespread, and most enthusiastic people about math ever. like its just amazing

yeah i think aops has the most ppl commenting
its like math social media lolll
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DhruvJha
768 posts
#3
Y by
nmlikesmath wrote:
richard, thank you for everything, for making this website and creating aops. even though I joined aops relatively recently, there are so many materials and books, and other things that help us all learn, and i think that aops was my most valuable math learning tool. just wanted to say thanks

also just wanted to say that the aops community is probably the most vibrant, widespread, and most enthusiastic people about math ever. like its just amazing

bro the man didnt die


there is no need to say rip
This post has been edited 1 time. Last edited by DhruvJha, Mar 27, 2025, 1:58 AM
Reason: ol
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nmlikesmath
461 posts
#4 • 1 Y
Y by Total_Awesomeness
idc bro it feels like that
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DhruvJha
768 posts
#5 • 1 Y
Y by jkim0656
nmlikesmath wrote:
idc bro it feels like that

for real
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nmlikesmath
461 posts
#6
Y by
bro tbh nobody can replace richard EDIT: mb sry
This post has been edited 1 time. Last edited by nmlikesmath, Mar 27, 2025, 2:04 AM
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jkim0656
420 posts
#7
Y by
nmlikesmath wrote:
bro tbh nobody can replace richard

i think the people that will replace richard feel a bit down cuz of ur post lol
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nmlikesmath
461 posts
#8
Y by
oh im not trying to insult them
its just that Richard is too good, I'm sure the new CEO's will also be amazing
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jkim0656
420 posts
#9 • 4 Y
Y by DhruvJha, poodle, skronkmonster, nmlikesmath
the richard profiles are real
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
PatTheKing806
1017 posts
#10
Y by
Nobody can replace this:

https://cdn.artofproblemsolving.com/attachments/8/2/e652413f72b5e486be13af12bccfad2352b2af.png
This post has been edited 1 time. Last edited by PatTheKing806, Mar 27, 2025, 2:06 AM
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nmlikesmath
461 posts
#11
Y by
for realll
richard will be missed by millions
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DhruvJha
768 posts
#12
Y by
jkim0656 wrote:
nmlikesmath wrote:
bro tbh nobody can replace richard

i think the people that will replace richard feel a bit down cuz of ur post lol


facts will remain facts. richard is the goat
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DhruvJha
768 posts
#13
Y by
everyone change your profile to the richard ruscyzk one with the space thing
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nmlikesmath
461 posts
#14
Y by
yessirrrr
i mean hes helped millions reach their math goal and has spend so much time trying to make this amazing community and quality material for ppl
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nmlikesmath
461 posts
#15 • 1 Y
Y by jkim0656
march 24, 2025 will go down in history as the AoPS Memorial Day, to remember richard and the real ones who made aops
Z Y
G
H
=
a