Join our FREE webinar on May 1st to learn about managing anxiety.

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i A Letter to MSM
Arr0w   23
N Sep 19, 2022 by scannose
Greetings.

I have seen many posts talking about commonly asked questions, such as finding the value of $0^0$, $\frac{1}{0}$,$\frac{0}{0}$, $\frac{\infty}{\infty}$, why $0.999...=1$ or even expressions of those terms combined as if that would make them defined. I have made this post to answer these questions once and for all, and I politely ask everyone to link this post to threads that are talking about this issue.
[list]
[*]Firstly, the case of $0^0$. It is usually regarded that $0^0=1$, not because this works numerically but because it is convenient to define it this way. You will see the convenience of defining other undefined things later on in this post.

[*]What about $\frac{\infty}{\infty}$? The issue here is that $\infty$ isn't even rigorously defined in this expression. What exactly do we mean by $\infty$? Unless the example in question is put in context in a formal manner, then we say that $\frac{\infty}{\infty}$ is meaningless.

[*]What about $\frac{1}{0}$? Suppose that $x=\frac{1}{0}$. Then we would have $x\cdot 0=0=1$, absurd. A more rigorous treatment of the idea is that $\lim_{x\to0}\frac{1}{x}$ does not exist in the first place, although you will see why in a calculus course. So the point is that $\frac{1}{0}$ is undefined.

[*]What about if $0.99999...=1$? An article from brilliant has a good explanation. Alternatively, you can just use a geometric series. Notice that
\begin{align*}
\sum_{n=1}^{\infty} \frac{9}{10^n}&=9\sum_{n=1}^{\infty}\frac{1}{10^n}=9\sum_{n=1}^{\infty}\biggr(\frac{1}{10}\biggr)^n=9\biggr(\frac{\frac{1}{10}}{1-\frac{1}{10}}\biggr)=9\biggr(\frac{\frac{1}{10}}{\frac{9}{10}}\biggr)=9\biggr(\frac{1}{9}\biggr)=\boxed{1}
\end{align*}
[*]What about $\frac{0}{0}$? Usually this is considered to be an indeterminate form, but I would also wager that this is also undefined.
[/list]
Hopefully all of these issues and their corollaries are finally put to rest. Cheers.

2nd EDIT (6/14/22): Since I originally posted this, it has since blown up so I will try to add additional information per the request of users in the thread below.

INDETERMINATE VS UNDEFINED

What makes something indeterminate? As you can see above, there are many things that are indeterminate. While definitions might vary slightly, it is the consensus that the following definition holds: A mathematical expression is be said to be indeterminate if it is not definitively or precisely determined. So how does this make, say, something like $0/0$ indeterminate? In analysis (the theory behind calculus and beyond), limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits. However, if the expression obtained after this substitution does not provide sufficient information to determine the original limit, then the expression is called an indeterminate form. For example, we could say that $0/0$ is an indeterminate form.

But we need to more specific, this is still ambiguous. An indeterminate form is a mathematical expression involving at most two of $0$, $1$ or $\infty$, obtained by applying the algebraic limit theorem (a theorem in analysis, look this up for details) in the process of attempting to determine a limit, which fails to restrict that limit to one specific value or infinity, and thus does not determine the limit being calculated. This is why it is called indeterminate. Some examples of indeterminate forms are
\[0/0, \infty/\infty, \infty-\infty, \infty \times 0\]etc etc. So what makes something undefined? In the broader scope, something being undefined refers to an expression which is not assigned an interpretation or a value. A function is said to be undefined for points outside its domain. For example, the function $f:\mathbb{R}^{+}\cup\{0\}\rightarrow\mathbb{R}$ given by the mapping $x\mapsto \sqrt{x}$ is undefined for $x<0$. On the other hand, $1/0$ is undefined because dividing by $0$ is not defined in arithmetic by definition. In other words, something is undefined when it is not defined in some mathematical context.

WHEN THE WATERS GET MUDDIED

So with this notion of indeterminate and undefined, things get convoluted. First of all, just because something is indeterminate does not mean it is not undefined. For example $0/0$ is considered both indeterminate and undefined (but in the context of a limit then it is considered in indeterminate form). Additionally, this notion of something being undefined also means that we can define it in some way. To rephrase, this means that technically, we can make something that is undefined to something that is defined as long as we define it. I'll show you what I mean.

One example of making something undefined into something defined is the extended real number line, which we define as
\[\overline{\mathbb{R}}=\mathbb{R}\cup \{-\infty,+\infty\}.\]So instead of treating infinity as an idea, we define infinity (positively and negatively, mind you) as actual numbers in the reals. The advantage of doing this is for two reasons. The first is because we can turn this thing into a totally ordered set. Specifically, we can let $-\infty\le a\le \infty$ for each $a\in\overline{\mathbb{R}}$ which means that via this order topology each subset has an infimum and supremum and $\overline{\mathbb{R}}$ is therefore compact. While this is nice from an analytic standpoint, extending the reals in this way can allow for interesting arithmetic! In $\overline{\mathbb{R}}$ it is perfectly OK to say that,
\begin{align*}
a + \infty = \infty + a & = \infty, & a & \neq -\infty \\
a - \infty = -\infty + a & = -\infty, & a & \neq \infty \\
a \cdot (\pm\infty) = \pm\infty \cdot a & = \pm\infty, & a & \in (0, +\infty] \\
a \cdot (\pm\infty) = \pm\infty \cdot a & = \mp\infty, & a & \in [-\infty, 0) \\
\frac{a}{\pm\infty} & = 0, & a & \in \mathbb{R} \\
\frac{\pm\infty}{a} & = \pm\infty, & a & \in (0, +\infty) \\
\frac{\pm\infty}{a} & = \mp\infty, & a & \in (-\infty, 0).
\end{align*}So addition, multiplication, and division are all defined nicely. However, notice that we have some indeterminate forms here which are also undefined,
\[\infty-\infty,\frac{\pm\infty}{\pm\infty},\frac{\pm\infty}{0},0\cdot \pm\infty.\]So while we define certain things, we also left others undefined/indeterminate in the process! However, in the context of measure theory it is common to define $\infty \times 0=0$ as greenturtle3141 noted below. I encourage to reread what he wrote, it's great stuff! As you may notice, though, dividing by $0$ is undefined still! Is there a place where it isn't? Kind of. To do this, we can extend the complex numbers! More formally, we can define this extension as
\[\mathbb{C}^*=\mathbb{C}\cup\{\tilde{\infty}\}\]which we call the Riemann Sphere (it actually forms a sphere, pretty cool right?). As a note, $\tilde{\infty}$ means complex infinity, since we are in the complex plane now. Here's the catch: division by $0$ is allowed here! In fact, we have
\[\frac{z}{0}=\tilde{\infty},\frac{z}{\tilde{\infty}}=0.\]where $\tilde{\infty}/\tilde{\infty}$ and $0/0$ are left undefined. We also have
\begin{align*}
z+\tilde{\infty}=\tilde{\infty}, \forall z\ne -\infty\\
z\times \tilde{\infty}=\tilde{\infty}, \forall z\ne 0
\end{align*}Furthermore, we actually have some nice properties with multiplication that we didn't have before. In $\mathbb{C}^*$ it holds that
\[\tilde{\infty}\times \tilde{\infty}=\tilde{\infty}\]but $\tilde{\infty}-\tilde{\infty}$ and $0\times \tilde{\infty}$ are left as undefined (unless there is an explicit need to change that somehow). One could define the projectively extended reals as we did with $\mathbb{C}^*$, by defining them as
\[{\widehat {\mathbb {R} }}=\mathbb {R} \cup \{\infty \}.\]They behave in a similar way to the Riemann Sphere, with division by $0$ also being allowed with the same indeterminate forms (in addition to some other ones).
23 replies
Arr0w
Feb 11, 2022
scannose
Sep 19, 2022
k i Marathon Threads
LauraZed   0
Jul 2, 2019
Due to excessive spam and inappropriate posts, we have locked the Prealgebra and Beginning Algebra threads.

We will either unlock these threads once we've cleaned them up or start new ones, but for now, do not start new marathon threads for these subjects. Any new marathon threads started while this announcement is up will be immediately deleted.
0 replies
LauraZed
Jul 2, 2019
0 replies
k i Basic Forum Rules and Info (Read before posting)
jellymoop   368
N May 16, 2018 by harry1234
f (Reminder: Do not post Alcumus or class homework questions on this forum. Instructions below.) f
Welcome to the Middle School Math Forum! Please take a moment to familiarize yourself with the rules.

Overview:
[list]
[*] When you're posting a new topic with a math problem, give the topic a detailed title that includes the subject of the problem (not just "easy problem" or "nice problem")
[*] Stay on topic and be courteous.
[*] Hide solutions!
[*] If you see an inappropriate post in this forum, simply report the post and a moderator will deal with it. Don't make your own post telling people they're not following the rules - that usually just makes the issue worse.
[*] When you post a question that you need help solving, post what you've attempted so far and not just the question. We are here to learn from each other, not to do your homework. :P
[*] Avoid making posts just to thank someone - you can use the upvote function instead
[*] Don't make a new reply just to repeat yourself or comment on the quality of others' posts; instead, post when you have a new insight or question. You can also edit your post if it's the most recent and you want to add more information.
[*] Avoid bumping old posts.
[*] Use GameBot to post alcumus questions.
[*] If you need general MATHCOUNTS/math competition advice, check out the threads below.
[*] Don't post other users' real names.
[*] Advertisements are not allowed. You can advertise your forum on your profile with a link, on your blog, and on user-created forums that permit forum advertisements.
[/list]

Here are links to more detailed versions of the rules. These are from the older forums, so you can overlook "Classroom math/Competition math only" instructions.
Posting Guidelines
Update on Basic Forum Rules
What belongs on this forum?
How do I write a thorough solution?
How do I get a problem on the contest page?
How do I study for mathcounts?
Mathcounts FAQ and resources
Mathcounts and how to learn

As always, if you have any questions, you can PM me or any of the other Middle School Moderators. Once again, if you see spam, it would help a lot if you filed a report instead of responding :)

Marathons!
Relays might be a better way to describe it, but these threads definitely go the distance! One person starts off by posting a problem, and the next person comes up with a solution and a new problem for another user to solve. Here's some of the frequently active marathons running in this forum:
[list][*]Algebra
[*]Prealgebra
[*]Proofs
[*]Factoring
[*]Geometry
[*]Counting & Probability
[*]Number Theory[/list]
Some of these haven't received attention in a while, but these are the main ones for their respective subjects. Rather than starting a new marathon, please give the existing ones a shot first.

You can also view marathons via the Marathon tag.

Think this list is incomplete or needs changes? Let the mods know and we'll take a look.
368 replies
jellymoop
May 8, 2015
harry1234
May 16, 2018
Geometry with orthocenter config
thdnder   2
N 5 minutes ago by thdnder
Source: Own
Let $ABC$ be a triangle, and let $AD, BE, CF$ be its altitudes. Let $H$ be its orthocenter, and let $O_B$ and $O_C$ be the circumcenters of triangles $AHC$ and $AHB$. Let $G$ be the second intersection of the circumcircles of triangles $FDO_B$ and $EDO_C$. Prove that the lines $DG$, $EF$, and $A$-median of $\triangle ABC$ are concurrent.
2 replies
thdnder
Yesterday at 5:26 PM
thdnder
5 minutes ago
problem interesting
Cobedangiu   3
N 6 minutes ago by tom-nowy
Let $a=3k^2+3k+1 (a,k \in N)$
$i)$ Prove that: $a^2$ is the sum of $3$ square numbers
$ii)$ Let $b \vdots a$ and $b$ is the sum of $3$ square numbers. Prove that: $b^n$ is the sum of $3$ square numbers
3 replies
Cobedangiu
Today at 5:06 AM
tom-nowy
6 minutes ago
Choose P on (AOB) and Q on (AOC)
MarkBcc168   7
N 7 minutes ago by akasht
Source: ELMO Shortlist 2024 G5
Let $ABC$ be a triangle with circumcenter $O$ and circumcircle $\omega$. Let $D$ be the foot of the altitude from $A$ to $\overline{BC}$. Let $P$ and $Q$ be points on the circumcircles of triangles $AOB$ and $AOC$, respectively, such that $A$, $P$, and $Q$ are collinear. Prove that if the circumcircle of triangle $OPQ$ is tangent to $\omega$ at $T$, then $\angle BTD=\angle CAP$.

Tiger Zhang
7 replies
1 viewing
MarkBcc168
Jun 22, 2024
akasht
7 minutes ago
Do not try to bash on beautiful geometry
ItzsleepyXD   2
N 14 minutes ago by moony_
Source: Own , Mock Thailand Mathematic Olympiad P9
Let $ABC$be triangle with point $D,E$ and $F$ on $BC,AB,CA$
such that $BE=CF$ and $E,F$ are on the same side of $BC$
Let $M$ be midpoint of segment $BC$ and $N$ be midpoint of segment $EF$
Let $G$ be intersection of $BF$ with $CE$ and $\dfrac{BD}{DC}=\dfrac{AC}{AB}$
Prove that $MN\parallel DG$
2 replies
ItzsleepyXD
3 hours ago
moony_
14 minutes ago
Can someone explain this one
hawa   10
N Yesterday at 8:23 PM by VivaanKam
Suppose n is the largest integer obtained by solving the following inequality:

3+9+18+30+...+n
n < 2021.
10 replies
hawa
Yesterday at 1:36 AM
VivaanKam
Yesterday at 8:23 PM
Alcumus specs
YeohZY   5
N Yesterday at 7:23 PM by PikaPika999
Hi, can I ask about how Alcumus gives you points? (I mean the number on the red/orange/green/blue line on top that gains once you get correct answers. I'll just call it the score). I want to get my score up to 100, but I always can't and get stuck at like 98 or sth. Why is this so, and also how does alcumus make that "score" higher?
5 replies
YeohZY
Apr 27, 2025
PikaPika999
Yesterday at 7:23 PM
Math Problem I cant figure out how to do without bashing
equalsmc2   3
N Yesterday at 3:55 PM by NovaFrost
Hi,
I cant figure out how to do these 2 problems without bashing. Do you guys have any ideas for an elegant solution? Thank you!
Prob 1.
An RSM sports field has a square shape. Poles with letters M, A, T, H are located at the corners of the square (see the diagram). During warm up, a student starts at any pole, runs to another pole along a side of the square or across the field along diagonal MT (only in the direction from M to T), then runs to another pole along a side of the square or along diagonal MT, and so on. The student cannot repeat a run along the same side/diagonal of the square in the same direction. For instance, she cannot run from M to A twice, but she can run from M to A and at some point from A to M. How many different ways are there to complete the warm up that includes all nine possible runs (see the diagram)? One possible way is M-A-T-H-M-H-T-A-M-T (picture attached)

Prob 2.
In the expression 5@5@5@5@5 you replace each of the four @ symbols with either +, or, or x, or . You can insert one or more pairs of parentheses to control the order of operations. Find the second least whole number that CANNOT be the value of the resulting expression. For example, each of the numbers 25=5+5+5+5+5 and 605+(5+5)×5+5 can be the value of the resulting expression.

Prob 3. (This isnt bashing I don't understand how to do it though)
Suppose BC = 3AB in rectangle ABCD. Points E and F are on side BC such that BE = EF = FC. Compute the sum of the degree measures of the four angles EAB, EAF, EAC, EAD.

P.S. These are from an RSM olympiad. The answers are
3 replies
equalsmc2
Apr 6, 2025
NovaFrost
Yesterday at 3:55 PM
Counting Problems
mithu542   1
N Yesterday at 3:30 PM by Bummer12345
Hello!

Here are some challenging practice counting problems. Enjoy! (You're allowed to use a calculator) hint


1.
Yan rolls 9 standard six-sided dice.
What is the probability that at least one pair of dice has a sum of 8?
Round your answer to 3 decimal places.

2.
Each face of a cube is painted one of 5 colors: red, blue, green, yellow, or white.
What is the probability that no two adjacent faces are painted the same color?
Round your answer to 3 decimal places.

3.
You roll 8 standard six-sided dice in a row.
What is the probability that at least one pair of adjacent dice differ by exactly 2?
Round your answer to 3 decimal places.

4.
A 4×4×4 cube (made of 64 mini-cubes) is randomly painted, each mini-cube colored independently either black or white.
What is the probability that at least one mini-cube adjacent to the center mini-cube is black?
Round your answer to 3 decimal places.

5.
Yan rolls 7 dice, each numbered 11 to 88.
What is the probability that at least two dice show the same number?
Round your answer to 3 decimal places.

6.
Each vertex of a cube is randomly colored either red, blue, or green.
What is the probability that there exists at least one face whose four vertices are all the same color?
Round your answer to 3 decimal places.

7.
You roll 6 standard six-sided dice.
What is the probability that the sum of all six dice is divisible by 4?
Round your answer to 3 decimal places.

8.
Each face of a cube is randomly colored red, blue, green, or yellow.
What is the probability that no two opposite faces are painted the same color?
Round your answer to 3 decimal places.

9.
Yan flips a fair coin 12 times.
What is the probability that there is at least one sequence of 4 consecutive heads?
Round your answer to 3 decimal places.

10.
Each edge of a cube is randomly colored either red, blue, or green.
What is the probability that no face of the cube has all three edges the same color?
Round your answer to 3 decimal places.
1 reply
mithu542
Monday at 9:02 PM
Bummer12345
Yesterday at 3:30 PM
1234th Post!
PikaPika999   253
N Yesterday at 3:11 PM by ZMB038
I hit my 1234th post! (I think I missed it, I'm kinda late, :oops_sign:)

But here's a puzzle for you all! Try to create the numbers 1 through 25 using the numbers 1, 2, 3, and 4! You are only allowed to use addition, subtraction, multiplication, division, and parenthesis. If you're post #1, try to make 1. If you're post #2, try to make 2. If you're post #3, try to make 3, and so on. If you're a post after 25, then I guess you can try to make numbers greater than 25 but you can use factorials, square roots, and that stuff. Have fun!

1: $(4-3)\cdot(2-1)$
253 replies
PikaPika999
Apr 21, 2025
ZMB038
Yesterday at 3:11 PM
random problem i just thought about one day
ceilingfan404   28
N Yesterday at 11:26 AM by PikaPika999
i don't even know if this is solvable
Prove that there are finite/infinite powers of 2 where all the digits are also powers of 2. (For example, $4$ and $128$ are numbers that work, but $64$ and $1024$ don't work.)
28 replies
ceilingfan404
Apr 20, 2025
PikaPika999
Yesterday at 11:26 AM
9 What is the most important topic in maths competition?
AVIKRIS   60
N Yesterday at 3:44 AM by valisaxieamc
I think arithmetic is the most the most important topic in math competitions.
60 replies
AVIKRIS
Apr 19, 2025
valisaxieamc
Yesterday at 3:44 AM
300 MAP Goal??
Antoinette14   76
N Yesterday at 3:42 AM by valisaxieamc
Hey, so as a 6th grader, my big goal for MAP this spring is to get a 300 (ambitious, i know). I'm currently at a 285 (288 last year though). I'm already taking a intro to counting and probability course (One of my weak points), but is there anything else you recommend I focus on to get a 300?
76 replies
Antoinette14
Jan 30, 2025
valisaxieamc
Yesterday at 3:42 AM
Purple Comet Math Meet Recources
RabtejKalra   6
N Monday at 8:59 PM by LXC007
I heard that you can take a packet of information to the Purple Comet examination with some formulas, etc. Does anybody have a copy of a guidebook with all the important formulas? I'm just too lazy to write one myself.......
6 replies
RabtejKalra
Apr 24, 2025
LXC007
Monday at 8:59 PM
Preparing for Higher AIME+
PhoenixMathClub   8
N Monday at 7:57 PM by BS2012
Hello, I am going to be a 7th grader next year and I really want to qualify for USAJMO in 8th grade, so far I have these goals reached

1. AMC 10 Honor Roll A and B 2025
2. AMC 8 DHR and HR
3. AIME 3 :(

This year on AIME something happened and I got a 3 :( on the AMC's I got a 105 on AMC 10 A and I got a 114 on AMC 10 B. I want to improve mostly on AIME but since the AMC 10 is coming up quicker what would you guys recommend for getting 110+ on both of the AMC 10's and getting a 6+ on AIME? So far I am only doing Alcumus and have no books so far.... Checking the table of contents on the books Alcumus provides the same topics. I was thinking to take WOOT 1 and AMC 10 Problem Series.
8 replies
PhoenixMathClub
Apr 19, 2025
BS2012
Monday at 7:57 PM
APMO 2016: Great triangle
shinichiman   26
N Apr 6, 2025 by ray66
Source: APMO 2016, problem 1
We say that a triangle $ABC$ is great if the following holds: for any point $D$ on the side $BC$, if $P$ and $Q$ are the feet of the perpendiculars from $D$ to the lines $AB$ and $AC$, respectively, then the reflection of $D$ in the line $PQ$ lies on the circumcircle of the triangle $ABC$. Prove that triangle $ABC$ is great if and only if $\angle A = 90^{\circ}$ and $AB = AC$.

Senior Problems Committee of the Australian Mathematical Olympiad Committee
26 replies
shinichiman
May 16, 2016
ray66
Apr 6, 2025
APMO 2016: Great triangle
G H J
Source: APMO 2016, problem 1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
shinichiman
3212 posts
#1 • 10 Y
Y by buratinogigle, rightways, YadisBeles, Kezer, Davi-8191, R8450932, UpvoteFarm, Adventure10, Mango247, Rounak_iitr
We say that a triangle $ABC$ is great if the following holds: for any point $D$ on the side $BC$, if $P$ and $Q$ are the feet of the perpendiculars from $D$ to the lines $AB$ and $AC$, respectively, then the reflection of $D$ in the line $PQ$ lies on the circumcircle of the triangle $ABC$. Prove that triangle $ABC$ is great if and only if $\angle A = 90^{\circ}$ and $AB = AC$.

Senior Problems Committee of the Australian Mathematical Olympiad Committee
This post has been edited 1 time. Last edited by MellowMelon, May 18, 2017, 3:29 AM
Reason: add proposer
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
djmathman
7938 posts
#2 • 10 Y
Y by A_Math_Lover, Ankoganit, ks_789, Tafi_ak, bobjoe123, ike.chen, jrsbr, UpvoteFarm, Adventure10, Mango247
Oh man, a geometric functional equation - interesting.

Solution
This post has been edited 2 times. Last edited by djmathman, May 16, 2016, 9:39 PM
Reason: reworded something small
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
62861
3564 posts
#3 • 2 Y
Y by UpvoteFarm, Adventure10
djmathman wrote:
Oh man, a geometric functional equation - interesting.

Solution

You need to show that a 45-45-90 triangle is great as well (which is not completely trivial).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
djmathman
7938 posts
#4 • 3 Y
Y by UpvoteFarm, Adventure10, Mango247
Oops that is true. It seems that I have forgotten the first fundamental rule of functional equations - one must always plug the solution back in to make sure it checks!

Fortunately this isn't too bad
This post has been edited 3 times. Last edited by djmathman, May 16, 2016, 9:46 PM
Reason: mislabeled points in original writeup oops
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
trumpeter
3332 posts
#6 • 3 Y
Y by UpvoteFarm, Adventure10, Mango247
djmathman wrote:
With this in mind, set $D$ to be the foot of the altitude from $A$ to $\overline{BC}$...

Just to put it out there, it is fairly easy to length-chase to get $AB=AC$ from here by using polynomials.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
navi_09220114
478 posts
#7 • 4 Y
Y by Tafi_ak, UpvoteFarm, Adventure10, Mango247
You can actually take D to be midpoint of BC, then to prove AB=AC will be easier, because then the feet of D to AB and AC is the midline,and D'A will then be parallel to BC... (of course, this is after you proved BAC=90 using angle bisector.)
This post has been edited 1 time. Last edited by navi_09220114, May 17, 2016, 1:01 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math90
1476 posts
#8 • 2 Y
Y by UpvoteFarm, Adventure10
First of all choose $D$ to be the foot of angle bisector from $A$. From here we obtain $\angle BAC=90$ by angle chasing. Now use the first observation and choose $D$ to be the foot of perpendicular from $A$. Now by length chasing and triangle similarity, we obtain $AB=AC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WizardMath
2487 posts
#9 • 3 Y
Y by UpvoteFarm, Adventure10, Mango247
$\phantom{}$
This post has been edited 1 time. Last edited by WizardMath, Dec 24, 2019, 2:24 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Complex2Liu
83 posts
#10 • 3 Y
Y by UpvoteFarm, Adventure10, Mango247
First we select $D$ as the intersection of $AO$ and $\overline{BC}.$ Let $E$ denotes the foot from $A$ to $\overline{BC},$ and $D^*,E^*$ denote the reflection of $D,E$ in line $PQ$ respectively. Since $PQ$ is parallel to $BC,$ it's easy to see that $E^*$ is the orthocenter of $\triangle APQ,$ which implies that $E^*$ and $D^*$ are symmetry over the perpendicular bisector of $\overline{BC},$ in other words, \[D^*\text{ lies on the circumcircle of }\triangle ABC\iff\angle BD^*C=\angle BE^*C=\angle A\iff E^*\equiv A.\]Therefore $PQ$ is median line $\implies \angle A=90^\circ.$ This is because $D$ is the intersection of the perpendicular bisector of $\overline{AB}$ and $\overline{AC}.$
[asy]
size(7cm); pointpen=black; pathpen=black; pointfontpen=fontsize(9pt);
void b(){
pair A=D("A",dir(110),dir(110));
pair B=D("B",dir(-150),dir(-150));
pair C=D("C",dir(-30),dir(-30));
pair D=D("D",extension(A,origin,B,C),S);
pair P=D("P",foot(D,A,B),W);
pair Q=D("Q",foot(D,A,C),E);
pair E=D("E",foot(A,B,C),S);
pair D1=D("D^*",2*foot(D,P,Q)-D,dir(120));
pair E1=D("E^*",2*foot(E,P,Q)-E,N);
D(A--B--C--cycle);
D(P--D--Q,magenta);
D(B--E1--C);
D(B--D1--C);
D(P--Q,dashed);
draw(anglemark(B,E1,C,3),deepgreen);
draw(anglemark(B,D1,C,3),deepgreen);
D(E1--E,dotted);
D(D1--D,dotted);
D(circumcircle(A,P,Q),red+linetype("4 4"));
}
b(); pathflag=false; b();
[/asy]
Then we select $D$ as the foot from $A$ to $\overline{BC}.$ By the above result we get $APDQ$ is a rectangle, thus $D^*\in \odot(APDQ),$ and
\[\begin{aligned}D^* \text{ lies on the circumcircle of }\triangle ABC &\iff D^* \text{ sends $\triangle D^*PB$ to $\triangle D^*QC$}\\
&\iff \frac{DP}{PB}=\frac{D^*P}{PB}=\frac{D^*Q}{QC}=\frac{DQ}{QC}\\
&\iff \tan{\angle B}=\tan{\angle C}\\
&\iff \angle B=\angle C. \end{aligned}\]as desired. $\square$
[asy]
size(7cm); pointpen=black; pathpen=black; pointfontpen=fontsize(9pt);
void b(){
pair A=D("A",dir(70),dir(70));
pair B=D("B",dir(180),W);
pair C=D("C",dir(0),E);
pair D=D("D",foot(A,B,C),S);
pair P=D("P",foot(D,A,B),W);
pair Q=D("Q",foot(D,A,C),S);
pair D1=D("D^*",2*foot(D,P,Q)-D,dir(70));
D(P--D--Q,magenta);
D(D--D1,dotted);
D(B--P--D1--cycle,blue+dashed);
D(D1--Q--C--cycle,blue+dashed);
D(A--P--Q--cycle);
D(B--C);
}
b(); pathflag=false; b();
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
babu2001
402 posts
#11 • 6 Y
Y by YadisBeles, Ramanujan_1729, Promi, UpvoteFarm, Adventure10, Mango247
As we have already seen we get $\angle BAC=90^{\circ}$ by setting $D$ to be the foot of angle bisector of $\angle BAC$. Now let $D$ be the midpoint of $BC$, then $P,Q$ are the midpoints of $AB,AC$ respectively as $\angle BAC=90^{\circ}$. Now let $D'$ be the reflection of $D$ in $PQ$. Then $\angle PD'Q=\angle PDQ=\angle PAQ\implies AD'PQ$ is cyclic, thus $D'\equiv\odot(ABC)\cap\odot(APQ)$. But $\odot(APQ)$ is tangent to $\odot(ABC)$ at $A$, hence $D'\equiv A$, hence $AD\perp PQ\implies AB=AC$, as required.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mjuk
196 posts
#12 • 2 Y
Y by UpvoteFarm, Adventure10
Let $E$ be reflection of $D$ in $PQ$.
1. Suppose $\triangle ABC$ is great:
Let $D$ be intersection of bisector of $\angle A$ and $BC$. $P,Q$ are symmetric wrt. $AD$, so reflection of $D$ in $PQ$ lies on $AD$. Both $A$ and $E$ lie on $\odot ABC$ and they are on same side of $PQ$, hence $A\equiv E \Longrightarrow \angle PAQ=\angle PDQ$, but since $APDQ$ is cyclic, $\angle PAQ=180^{\circ}-\angle PDQ$, so $\angle BAC=\angle PAQ=90^{\circ}$.
Now let $D$ be midpoint of $BC$. Let line paralel to $BC$ through $A$ intersect $\odot ABC$ at $A'$. Since $APDQ$ is a rectangle, we have $d(A,PQ)=d(D,PQ)=d(E,PQ)$, so $AE\parallel BC\Longrightarrow E\equiv A'$.Let $K,L$ be projections of $A,A'$ on $BC$, $AA'BC$ is isosceles trapezoid, so $K,L$ are symmetric wrt. $D$. Then since $K\equiv D\Longrightarrow L\equiv D\Longrightarrow A=A'$ so $\triangle ABC$ is $A$-isosceles and $\angle A=90^{\circ}$.
2. Suppose $\angle A=90$ and $AB=AC$.
$\angle PEQ=\angle PDQ=90^{\circ} \Longrightarrow PEDQ$ is cyclic. $QE=QD=AP=QC$, and $PE=PD=AQ=PB$. $\angle EQC=\angle EQD+90^{\circ}=180^{\circ}-\angle EPD+90^{\circ}=\angle BPE$ $\Longrightarrow \triangle QEC\sim \triangle PEB $
$\Longrightarrow \angle BEC=\angle PEQ=90^{\circ}\Longrightarrow E\in \odot ABC$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
oceanmath99
48 posts
#13 • 4 Y
Y by MRF2017, UpvoteFarm, Adventure10, Mango247
Sorry!
I read all post on the top carefully
But I have a question with case "ABC is great $\rightarrow$ $\angle A=90^{\circ}$ and $AB=AC$"
If D be a random point on the side BC (is not midpoint BC, foot of the angle bisector of $\angle A$,..) then prove that $\angle A=90^{\circ}$ and $AB=AC$?????

Please answer this my question!
Thanks all!
This post has been edited 2 times. Last edited by oceanmath99, May 28, 2016, 8:13 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
djmathman
7938 posts
#15 • 5 Y
Y by oceanmath99, sabkx, UpvoteFarm, Adventure10, Mango247
^^ That doesn't matter. We've shown that by setting $D$ to be the foot of the angle bisector or the midpoint of $BC$ or the foot of the altitude or whatever that the only triangle $\triangle ABC$ can possibly be is an isosceles right triangle. Thus, we don't have to test all the other points to conclude this.

Let's go off on what seemingly might be a tangent. Consider the following functional equation: find all functions $f$ such that \[f(x)+f(y)=x^2+y^2\]for all real $x$ and $y$. This FE has a very simple solution: substitute $y=x$ to obtain \[2f(x) = 2x^2\quad\implies\quad f(x) = x^2.\]Now we just need to check that $f(x)$ always works, which it does.

This may seem like a strange example, but the point is made clear: in order to show that $f(x)=x^2$ is the only possible function which satisfies the given conditions, all we need to do is to look at the case where $x=y$. Once we have that, we just need to check that $f(x)=x^2$ works.

The same thing goes with this problem. In all the posts above, we use the special cases of $D$ being the angle bisector/midpoint/etc. to deduce that $\triangle ABC$ must be an isosceles right triangle. Once we have that, we just need to check that indeed $\triangle ABC$ is great - which I do in post 4.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
oceanmath99
48 posts
#16 • 3 Y
Y by UpvoteFarm, Adventure10, Mango247
Dear djmathman,
Thanks you very much! I understand this problem is a geometric functional equation!

But,
Sorry, I still a small question.
I think we must see only case such as midpoint or angle bisrctor or...
No need see all case.
:)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rkm0959
1721 posts
#17 • 3 Y
Y by PWuSinaisGod, UpvoteFarm, Adventure10
First, we prove the if direction. Denote the reflection of $D$ wrt $PQ$ be $D'$.

Clearly $D'AQP$ is cyclic, so $\angle D'PB = \angle D'QC$.
Using $D'P =PD = BP$ and $D'Q=QD=QC$ gives $\triangle D'PB \sim \triangle D'QC$, so $\angle BD'C = \angle PD'Q=90$.
This implies that $AD'BC$ is cyclic. We are done.

Now we prove the only if direction.
First, take $D$ where $AD$ bisects $\angle A$. Then $\triangle PAD \equiv \triangle QAD$, so $D'$ lies on $AD$.
So if $AD'CB$ cyclic gives $A=D'$, so $AQDP$ is a square, so $\angle A = 90$.
Take $D$ be the perpendicular from $A$ to $BC$. $D'$ being on $(ABC)$ is equivalent to $\triangle D'PB \sim \triangle D'QC$.
This is equivalent to $\frac{DP}{PB} = \frac{DQ}{DC}$, or $\angle B = \angle C$. We are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tommy2000
715 posts
#18 • 2 Y
Y by UpvoteFarm, Adventure10
Let $D'$ denote the reflection of $D$ in $PQ$. First, take the foot of the angle bisector from $A$. Then we see that $\angle A = 90^\circ$ as $A$ and $D'$ lie on the same side of $BC$.

Now, we know $\angle PDQ = 90^\circ$, so it suffices to show $\angle BD'P = \angle CD'Q$. However we already know that $\angle D'PB = \angle D'QC$ as $AD'PQD$ is cyclic, so this is equivalent to the condition
\[ \frac{D'P}{PB} = \frac{DP}{PB} = \frac{DQ}{QC} = \frac{D'Q}{QC}\]However, we have
\[ \frac{DP}{PB} = \frac{QC}{DQ}\]since $PD \parallel AC$, so this is equivalent with $BPD$ and $CQD$ being isosceles right. But they are similar to the original, so the original condition is equivalent with $ABC$ being isosceles right with $\angle A = 90^\circ$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ta2341
9 posts
#19 • 3 Y
Y by UpvoteFarm, Adventure10, Mango247
Can we use continuity to argue that A must be the image of some point on BC? As B is its own image, and so is C, and we can argue that the image of a point on BC that is very close to B must lie on arc BAC, very close to B, so as point D travels from B to C on BC, its image travels from B to C on arc BAC, and therefore its image must overlap with A at some point. Is this valid?
This post has been edited 3 times. Last edited by ta2341, Mar 3, 2018, 11:03 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Math-wiz
6107 posts
#20 • 2 Y
Y by UpvoteFarm, Adventure10
shinichiman wrote:
We say that a triangle $ABC$ is great if the following holds: for any point $D$ on the side $BC$, if $P$ and $Q$ are the feet of the perpendiculars from $D$ to the lines $AB$ and $AC$, respectively, then the reflection of $D$ in the line $PQ$ lies on the circumcircle of the triangle $ABC$. Prove that triangle $ABC$ is great if and only if $\angle A = 90^{\circ}$ and $AB = AC$.

Senior Problems Committee of the Australian Mathematical Olympiad Committee

Anyone tried coordinate bash? Taking $A(0,0),B(0,y_1)$ and $C(x_2,y_2)$ simplifies the problem quite well, and it is easier to interpret reflection in tje Cartesian plane. I will post the solution as soon as I find one.
This post has been edited 1 time. Last edited by Math-wiz, Dec 22, 2019, 7:44 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
508669
1040 posts
#21 • 2 Y
Y by UpvoteFarm, Mango247
shinichiman wrote:
We say that a triangle $ABC$ is great if the following holds: for any point $D$ on the side $BC$, if $P$ and $Q$ are the feet of the perpendiculars from $D$ to the lines $AB$ and $AC$, respectively, then the reflection of $D$ in the line $PQ$ lies on the circumcircle of the triangle $ABC$. Prove that triangle $ABC$ is great if and only if $\angle A = 90^{\circ}$ and $AB = AC$.

Senior Problems Committee of the Australian Mathematical Olympiad Committee

Easy problem for APMO.

Let $D = BC \cap$ Angle Bisector of $\angle BAC$. It can be also seen that $D_1$ lies on $AD$. Since $A, D$ lie on opposite sides if $PQ$, $A, D_1$ lie on same side of $PQ$. But these assertion imply that $A = D_1$ which means that
$APDQ$ is a square which means that $\angle BAC = 90^\circ$.

Consider $D$ on $BC$ such that $\angle ADB = 90^\circ$. Then using the previous condition and this condition we get that $AB=AC$ in two steps because we get that $D = \odot (ABC) \cap \odot (APQ)$.

Now to prove this claim works, observe that it is angle chasing after noticing that $P, Q$ are circumcenter of $\triangle BDD_1$ and $\triangle CDD_1$ respectively.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CANBANKAN
1301 posts
#22 • 4 Y
Y by UpvoteFarm, Mango247, Mango247, Mango247
Why is this so hard? I sincerely found it much harder than APMO 16 P2,4,5

Let $D'$ be the reflection of $D$ over $PQ$.

If: note $\angle PDB=\angle QDC=45^{\circ}$, so $\angle PDQ=\angle PD'Q=90^{\circ}$ note $BP=PD=PD'$, and $CQ=DQ=D'Q$. We can see that $\angle BD'C=\angle PD'Q-\angle PD'B+\angle QD'C$. Since $BP=PD', D'Q=QC$, $\angle PD'B=\frac 12 \angle APD'$ and $\angle QD'C=\frac 12 \angle AQD'$. Since $\angle BAC=\angle PAQ=\angle PD'Q=90^{\circ}$, $APD'Q$ is cyclic, so $\angle APD'=\angle AQD'$, as desired.

Only if: let $D$ be the foot of the $\angle A$'s bisector. Then $\angle PAD=\angle QAD, AD=AD, \angle APD=\angle AQD$, so $APD$ is congruent to $AQD$, so $PD=QD$. This implies $AD$ perpendicularly bisect $PQ$, so $PR=RQ$. Therefore, $D'$ lies on $AD$, so $D'=A$, and $AR=RD$, so $\angle BAC=90^{\circ}$. Furthermore, $APDQ$ is actually a square.

To show $AB=AC$, I take $D=O$, the midpoint of $BC$. Then notice $OP,OQ$ are the midlines of $\triangle ABC$, and so is $PQ$. The key observation is $AD'||BC$. Indeed, let $R=AQ\cap D'P$, we can see $AR+RQ=D'R+RP$ and $AR\cdot RQ=D'R\cdot RP$, so it follows that $AR=D'R, QR=PR, AD||PQ||BC$. Furthermore, $D'O\perp BC$, so if $D'$ is on the circumcircle and $BC$ is horizontal, $D'$ is the highest point (or the lowest point) on the circle. Since $AD'||BC$, it follows that $A=D'$.
This post has been edited 3 times. Last edited by CANBANKAN, Mar 17, 2021, 1:00 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mahdi_Mashayekhi
695 posts
#23 • 1 Y
Y by UpvoteFarm
First we'll prove other triangles are not Great then we'll prove 90-45-45 is Great.

we just need to find special points as D. Let AD be angle bisector of ∠A. It's well known AD is perpendicular bisector of PQ so D' must be A. ∠PAQ = ∠PDQ = ∠ACB + ∠ABC so ∠PAQ = 90 so ∠A = 90. Now let AD be altitude. APDQ is rectangle so AD'PQ is isosceles trapezoid. ∠D'AP = ∠APQ = ∠ACB so if AD'BC is cyclic we have ∠AD'B = 180 - ∠ACB = 180 - ∠D'AP so D' lies on AB and is A so AD is perpendicular to APDQ so APDQ is square so AB = AC.

Let ABC be a 90-45-45 triangle and D a random point on BC. PB = PD = PD' and QC = QD = QD' so P and Q are center of BD'D and CD'D. ∠BD'C = ∠BD'D + ∠CD'D = 45 + 45 = 90 so BAD'C is cyclic.
we're Done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mogmog8
1080 posts
#24 • 3 Y
Y by centslordm, megarnie, UpvoteFarm
Claim: $\angle A=90$ and $AB=AC$ is necessary.
Proof. For each $D_i$ let $P_i$ and $Q_i$ be the feet from $D_i$ to $\overline{AB}$ and $\overline{AC}.$ Let $D_1$ be the foot of the angle bisector from $A$ and note that $D_1'$ lies on $\overline{AD_1}.$ Hence, $D_1'=A$ and since $AP_1D_1Q_1$ is cyclic, $$2\angle BAC=\angle P_1AQ_1+\angle P_1D_1Q_1=180$$and $\angle A=90.$ Let $D_2$ be the foot from $A$ to $\overline{BC}.$ Then, $D_2'$ lies on $(P_2D_2Q_2)$ and $(ABC)$ so $D_2'=A.$ Hence, $AP_2D_2Q_2$ is a square and $AB=AC.$ $\blacksquare$

Claim: $\angle A=90$ and $AB=AC$ is sufficient.
Proof. Notice $D'P=DP=BP$ so $\angle DD'B=\tfrac{1}{2}\angle DPB=45.$ Similarly, $\angle DD'C=45$ so $\angle CD'B=90=\angle A.$ $\blacksquare$ $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ike.chen
1162 posts
#25 • 1 Y
Y by UpvoteFarm
First, we assume $ABC$ is great. Let $D_1$ denote the reflection of $D$ in $PQ$.

Suppose $D$ is the foot of the internal bisector of $\angle BAC$. Then, we clearly have $DP = DQ$, so $APDQ$ is a kite. It follows that $AD \perp PQ$, so $A$ and $D_1$ must coincide. Thus, $$PA = PD = QD = QA$$which means $APDQ$ is a square, as $AD \perp PQ$. As a result, we know $\angle A = 90^{\circ}$ must hold.

Now, suppose $D$ is the midpoint of $BC$. Because $APDQ$ is a rectangle, $$\angle PD_1Q = \angle PDQ = 90^{\circ} = \angle PAQ$$so $APDQD_1$ is cyclic with diameter $PQ$. Moreover, $$\angle APQ = \angle PQD = \angle PQD_1 = \angle PAD_1$$implies $AD_1QP$ is a cyclic isosceles trapezoid. Hence, $AD_1$ and $PQ$ have the same perpendicular bisector, so $DP = DQ$ follows from $DA = R = DD_1$. Thus, $$AB = 2 \cdot DQ = 2 \cdot DP = AC$$which means the only possible solution is $\angle A = 90^{\circ}$ and $AB = AC$.

Now, we show that $ABC$ is indeed great when $\angle A = 90^{\circ}$ and $AB = AC$. Let $M$ be the circumcenter of $ABC$. It's clear that $AD_1QP$ is still an isosceles trapezoid. Now, since $BDP$ and $CDQ$ are also isosceles right triangles, we have $$BP \cdot PA = PD \cdot DQ = AQ \cdot QC$$so $$MP^2 = Pow_{(ABC)}(P) + R^2 = Pow_{(ABC)}(Q) + R^2 = MQ^2.$$Thus, $MA = MD_1$ follows from $MP = MQ$, which finishes. $\blacksquare$


Remarks: The flavor of this question is similar to that of ISL 2020/G1. In fact, attempting to solve that problem definitely helped me solve this question.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IAmTheHazard
5001 posts
#26 • 2 Y
Y by UpvoteFarm, centslordm
Send $D$ to $B$ and $C$ respectively, and the reflection $D'$ gets sent to $B$ and $C$ respectively as well. Therefore, by continuity, there exists some choice of $D$ such that $D'$ has the same "x-value" as $A$ if the x-axis is set to $\overline{BC}$ (i.e. $\overline{AD'} \perp \overline{BC}$ or $A=D'$). This clearly means that $D'=A$, since $D'$ is clearly not the second intersection of the $A$-altitude with $(ABC)$. But on the other hand, $\angle PD'Q=\angle PDQ=180^\circ-\angle PAQ$, so we must have $\angle A=90^\circ$.

Now, if $\triangle ABC$ is right, let $D$ be the midpoint of $\overline{BC}$, so $P$ and $Q$ are the midpoints of their respective sides as well. Then $d(D',\overline{BC})=2d(D,\overline{PQ})=d(A,\overline{BC})$. Since $D'B=D'C$, this is bad unless $A$ is the arc midpoint of $\overline{BC}$, i.e. $AB=AC$. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Inconsistent
1455 posts
#27
Y by
When $D = B$, we have $D' = B$ and when $D = C$, we have $D' = C$. Thus move $D$ continuously from $B$ to $C$, then since $D'$ lies on the same side of $BC$ as $A$, there exists $E$ on $BC$ so that when $D = E$, we have that $D' = A$. However this implies $A, E$ are equidistant from $P, Q$ when $D = E$, so $PQ$ passes through their midpoint, however $AE$ is a diameter of $(APEQ)$ so it follows that $\angle BAC = \angle PAQ = 90^{\circ}$.

Now, set $D$ to be the midpoint of $BC$, then the reflection of $D$ over $PQ$ is the projection of $A$ onto the perpendicular bisector of $BC$, since this must lie on $(ABC)$, it follows that $A$ lies on the horizontal bisector of $BC$, as desired.

Now to complete the case, when $ABC$ is as desired, we have that $AD$ passes through the center of $(APQ)$, so it is isogonal in $\angle A$ to the perpendicular to $PQ$. Thus if $A'$ is the reflection of $A$ over $BC$, it follows that $DA', AD$ are isogonal in $\angle A$ so $DA' \perp PQ$. Let $S = DA' \cap (ABC)$, then it follows that $SA \parallel PQ$. Since $PQ$ is a diameter of $(APQD)$, it also follows that $A, D'$ lie on the same side of $PQ$ and $d(A, PQ) = d(D', PQ)$, so we have $AD' \parallel PQ$ as well. Thus $S = D'$, finishing.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DottedCaculator
7344 posts
#28 • 1 Y
Y by ihatemath123
If $D$ is arbitrarily close to $B$, then the reflection of $D$ over $PQ$ lies on a line arbitrarily close to the reflection of $BC$ over the $B$-altitude and is arbitrarily close to $B$, which means that the $B$-altitude is the angle bisector of the tangent to $B$ is the angle bisector of $BC$, so $\angle B=\frac12\angle A$. Similarly, $\angle C=\frac12\angle A$, so $ABC$ is an isosceles right triangle. If $ABC$ is an isosceles right triangle, then $APDQ$ is a rectangle so if $O$ is the midpoint of $BC$ and $D'$ is the reflection of $D$ over $PQ$, then $APDQOD'$ is cyclic, so $\angle BAO=\angle OAC$ implies $\angle PD'O=\angle QAO$, and $D'Q=DQ=AP$ implies $\angle AD'P=\angle D'AQ$, so $\angle AD'O=\angle D'AO$ implies $D'$ lies on the circumcircle of $ABC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ray66
34 posts
#29
Y by
Sketch

First denote the reflection of $D$ over $PQ$ as $D'$. Consider $D$ when $D'$ coincides with $A$. This occurs when $\angle A=90$ and $D$ lies on the intersection of $BC$ with the angle bisector of $A$. Next, consider the case that $PQ$ is parallel to $BC$. This occurs when $D$ is the midpoint of $BC$, so $A$ must be the midpoint of arc $BC$. Now consider $D'$, which is also the reflection of $A$ over the perpendicular bisector of $PQ$. $D'$ only lies on the circle if the perpendicular bisector of $PQ$ passes through $O$ (because the reflection of $A$ over a diameter is also on the circle). By POP, the power of $Q$ is the same as the power of $P$ in every isosceles right triangle, so $OM'$ bisects $PQ$ and we're done.
Z K Y
N Quick Reply
G
H
=
a