Checking a summand property for integers sufficiently large.

by DinDean, Apr 22, 2025, 5:21 PM

For any fixed integer $m\geqslant 2$, prove that there exists a positive integer $f(m)$, such that for any integer $n\geqslant f(m)$, $n$ can be expressed by a sum of positive integers $a_i$'s as
\[n=a_1+a_2+\dots+a_m,\]where $a_1\mid a_2$, $a_2\mid a_3$, $\dots$, $a_{m-1}\mid a_m$.

Combo problem

by soryn, Apr 22, 2025, 6:33 AM

The school A has m1 boys and m2 girls, and ,the school B has n1 boys and n2 girls. Each school is represented by one team formed by p students,boys and girls. If f(k) is the number of cases for which,the twice schools has,togheter k girls, fund f(k) and the valute of k, for which f(k) is maximum.

real+ FE

by pomodor_ap, Apr 21, 2025, 11:24 AM

Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be a function such that
$$f(x)f(x^2 + y f(y)) = f(x)f(y^2) + x^3$$for all $x, y \in \mathbb{R}^+$. Determine all such functions $f$.

Calculate the distance of chess king!!

by egxa, Apr 18, 2025, 9:58 AM

A chess king was placed on a square of an \(8 \times 8\) board and made $64$ moves so that it visited all squares and returned to the starting square. At every moment, the distance from the center of the square the king was on to the center of the board was calculated. A move is called $\emph{pleasant}$ if this distance becomes smaller after the move. Find the maximum possible number of pleasant moves. (The chess king moves to a square adjacent either by side or by corner.)

FE solution too simple?

by Yiyj1, Apr 9, 2025, 3:26 AM

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality $$f(f(x)+y) = f(x^2-y)+4f(x)y$$holds for all pairs of real numbers $(x,y)$.

My solution

I feel like my solution is too simple. Is there something I did wrong or something I missed?

hard problem

by Cobedangiu, Apr 2, 2025, 6:11 PM

Let $x,y,z>0$ and $xy+yz+zx=3$ : Prove that :
$\sum  \ \frac{x}{y+z}\ge\sum  \frac{1}{\sqrt{x+3}}$

As some nations like to say "Heavy theorems mostly do not help"

by Assassino9931, Dec 20, 2022, 12:02 AM

We say that a positive integer $n$ is lovely if there exist a positive integer $k$ and (not necessarily distinct) positive integers $d_1$, $d_2$, $\ldots$, $d_k$ such that $n = d_1d_2\cdots d_k$ and $d_i^2 \mid n + d_i$ for $i=1,2,\ldots,k$.

a) Are there infinitely many lovely numbers?

b) Is there a lovely number, greater than $1$, which is a perfect square of an integer?
This post has been edited 1 time. Last edited by Assassino9931, Dec 20, 2022, 12:02 AM

Circumcircle excircle chaos

by CyclicISLscelesTrapezoid, Jul 12, 2022, 12:32 PM

Let $ABC$ be a triangle with circumcircle $\omega$ and let $\Omega_A$ be the $A$-excircle. Let $X$ and $Y$ be the intersection points of $\omega$ and $\Omega_A$. Let $P$ and $Q$ be the projections of $A$ onto the tangent lines to $\Omega_A$ at $X$ and $Y$ respectively. The tangent line at $P$ to the circumcircle of the triangle $APX$ intersects the tangent line at $Q$ to the circumcircle of the triangle $AQY$ at a point $R$. Prove that $\overline{AR} \perp \overline{BC}$.

Polynomials in Z[x]

by BartSimpsons, Dec 27, 2017, 12:25 PM

Find all polynomials $P$ with integer coefficients such that $P (0)\ne  0$ and $$P^n(m)\cdot P^m(n)$$is a square of an integer for all nonnegative integers $n, m$.

Remark: For a nonnegative integer $k$ and an integer $n$, $P^k(n)$ is defined as follows: $P^k(n) = n$ if $k = 0$ and $P^k(n)=P(P(^{k-1}(n))$ if $k >0$.

Proposed by Adrian Beker.
This post has been edited 1 time. Last edited by BartSimpsons, Dec 27, 2017, 12:26 PM
Reason: added source

congruence

by moldovan, Jun 26, 2009, 7:19 AM

Fun with math!

avatar

aoum
Archives
+ March 2025
Shouts
Submit
  • um this does seem slightly similar to ai

    by electric_pi, Yesterday at 11:24 PM

  • 100 posts!

    by aoum, Yesterday at 9:11 PM

  • Very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very cool (The maximum of the factorial machine is 7228!

    by Coin1, Yesterday at 4:44 AM

  • cool blog and good content but it looks eerily similar to chatgpt

    by SirAppel, Apr 17, 2025, 1:28 AM

  • 1,000 views!

    by aoum, Apr 17, 2025, 12:25 AM

  • Excellent blog. Contribute?

    by zhenghua, Apr 10, 2025, 1:27 AM

  • Are you asking to contribute or to be notified whenever a post is published?

    by aoum, Apr 10, 2025, 12:20 AM

  • nice blog! love the dedication c:
    can i have contrib to be notified whenever you post?

    by akliu, Apr 10, 2025, 12:08 AM

  • WOAH I JUST CAME HERE, CSS IS CRAZY

    by HacheB2031, Apr 8, 2025, 5:05 AM

  • Thanks! I'm happy to hear that! How is the new CSS? If you don't like it, I can go back.

    by aoum, Apr 8, 2025, 12:42 AM

  • This is such a cool blog! Just a suggestion, but I feel like it would look a bit better if the entries were wider. They're really skinny right now, which makes the posts seem a lot longer.

    by Catcumber, Apr 4, 2025, 11:16 PM

  • The first few posts for April are out!

    by aoum, Apr 1, 2025, 11:51 PM

  • Sure! I understand that it would be quite a bit to take in.

    by aoum, Apr 1, 2025, 11:08 PM

  • No, but it is a lot to take in. Also, could you do the Gamma Function next?

    by HacheB2031, Apr 1, 2025, 3:04 AM

  • Am I going too fast? Would you like me to slow down?

    by aoum, Mar 31, 2025, 11:34 PM

59 shouts
Contributors
Tags
Problem of the Day
Fractals
combinatorics
geometry
poll
Collatz Conjecture
Factorials
graph theory
infinity
Millennium Prize Problems
pi
Riemann Hypothesis
Sir Issac Newton
AMC
calculus
Chudnovsky Algorithm
Exponents
Gauss-Legendre Algorithm
Goldbach Conjecture
Koch snowflake
MAA
Mandelbrot Set
Mastering AMC 1012
MATHCOUNTS
Matroids
Nilakantha Series
number theory
P vs NP Problem
P-adic Analysis
paradoxes
Polynomials
probability
Ramsey Theory
algebra
Algorithmic Applications
AMC 10
AMC 8
angle bisector theorem
Angle trisection
Applications in Various Fields
Arc Sine Formula
Archimedes Method
Banach-Tarski Paradox
Basel Problem
Basic Reproduction Number
Bayes Theorem
Bell Curve
Bernoulli numbers
Bertrand s Box Paradox
binomial theorem
Birthday Attack
Birthday Problem
buffon s needle
Cantor s Infinite Sets
cardinality
catalan numbers
Chicken McNugget Theorem
Circumference
Coin Rotation Paradox
computer science
conditional probability
conic sections
Conjectures
Cryptography
Cyclic Numbers
Cyclic Sieving Phenomenon
Different Sizes of Infinity
Diophantine Equations
Diophantinve Approximation
Dirichlets Approximation
Diseases
Double Factorials
Drake Equation
epidemiology
euclidean geometry
Euler s Formula for Polyhedra
Euler s Identity
Euler s totient function
Euler-Lagrange Equation
Fermat s Factoring Method
fermat s last theorem
Fibonacci sequence
finite
four color theorem
Fractals and Chaos Theory
free books
Gamma function
Golden Ratio
Graham s Number
Graph Minor Theorem
gravity
Greedoids
Gregory-Liebniz Series
Hailstone Problem
Heron s Formula
Hilbert s Hotel
Hilberts Hotel
Hodge Conjecture
ideal gas law
Inclusion-exclusion
infinite
Irrational numbers
Kruskals Tree Theorem
Law of Force and Acceleration
legendre s theorem
Leibniz Formula
logarithms
logic
Mastering AMC 8
Matrices
Menger Sponge
Minkowskis Theorem
modular arithmetic
Multinomial Theorem
Multiples of 24
National Science Bowl
Newton s First Law of Motion
Newton s Second Law of Motion
Newton s Third Law of Motion
normal distribution
Parabolas
Paradox
Penrose Tilings
physical chemistry
pie
pigeonhole principle
Price s Equation
prime numbers
primes
Ptolemys Theorem
Pythagorean Theorem
Python
Ramsey s Theorem
recursion
Reproduction Rate of Diseases
Sequences
Sequences of Binomial Type
Sets
Sierpinski Triangle
Sierpiski Carpet
Sierpiski Triangle
Simon s Factoring Trick
statistics
The Birthday Problem
The Book of Formulas
The HalesJewett Theorem
The Law of Action and Reaction
The Law of Inertia
The Lost Boarding Pass Problem
thermodynamics
Topological Insights
triangle inequality
trigonometry
twin prime conjecture
Umbral Calculus
Van der Waerdens Theorem
venn diagram
Wallis Product
Zeno s Paradoxes
About Owner
  • Posts: 0
  • Joined: Nov 2, 2024
Blog Stats
  • Blog created: Mar 1, 2025
  • Total entries: 100
  • Total visits: 1045
  • Total comments: 27
Search Blog
a