Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
Geometry problem about Euler line
lgx57   2
N an hour ago by pooh123
If the Euler line of a triangle is parallel to one side of the triangle, what is the relationship between the sides of this triangle?

The relationship between the angles of this triangle
2 replies
lgx57
Apr 9, 2025
pooh123
an hour ago
Indonesia Regional MO 2019 Part A
parmenides51   10
N 3 hours ago by Mr.Awan
Indonesia Regional MO
Year 2019 Part A

Time: 90 minutes Rules


p1. In the bag there are $7$ red balls and $8$ white balls. Audi took two balls at once from inside the bag. The chance of taking two balls of the same color is ...


p2. Given a regular hexagon with a side length of $1$ unit. The area of the hexagon is ...


p3. It is known that $r, s$ and $1$ are the roots of the cubic equation $x^3 - 2x + c = 0$. The value of $(r-s)^2$ is ...


p4. The number of pairs of natural numbers $(m, n)$ so that $GCD(n,m) = 2$ and $LCM(m,n) = 1000$ is ...


p5. A data with four real numbers $2n-4$, $2n-6$, $n^2-8$, $3n^2-6$ has an average of $0$ and a median of $9/2$. The largest number of such data is ...


p6. Suppose $a, b, c, d$ are integers greater than $2019$ which are four consecutive quarters of an arithmetic row with $a <b <c <d$. If $a$ and $d$ are squares of two consecutive natural numbers, then the smallest value of $c-b$ is ...


p7. Given a triangle $ABC$, with $AB = 6$, $AC = 8$ and $BC = 10$. The points $D$ and $E$ lies on the line segment $BC$. with $BD = 2$ and $CE = 4$. The measure of the angle $\angle DAE$ is ...


p8. Sequqnce of real numbers $a_1,a_2,a_3,...$ meet $\frac{na_1+(n-1)a_2+...+2a_{n-1}+a_n}{n^2}=1$ for each natural number $n$. The value of $a_1a_2a_3...a_{2019}$ is ....


p9. The number of ways to select four numbers from $\{1,2,3, ..., 15\}$ provided that the difference of any two numbers at least $3$ is ...


p10. Pairs of natural numbers $(m , n)$ which satisfies $$m^2n+mn^2 +m^2+2mn = 2018m + 2019n + 2019$$are as many as ...


p11. Given a triangle $ABC$ with $\angle ABC =135^o$ and $BC> AB$. Point $D$ lies on the side $BC$ so that $AB=CD$. Suppose $F$ is a point on the side extension $AB$ so that $DF$ is perpendicular to $AB$. The point $E$ lies on the ray $DF$ such that $DE> DF$ and $\angle ACE = 45^o$. The large angle $\angle AEC$ is ...


p12. The set of $S$ consists of $n$ integers with the following properties: For every three different members of $S$ there are two of them whose sum is a member of $S$. The largest value of $n$ is ....


p13. The minimum value of $\frac{a^2+2b^2+\sqrt2}{\sqrt{ab}}$ with $a, b$ positive reals is ....


p14. The polynomial P satisfies the equation $P (x^2) = x^{2019} (x+ 1) P (x)$ with $P (1/2)= -1$ is ....


p15. Look at a chessboard measuring $19 \times 19$ square units. Two plots are said to be neighbors if they both have one side in common. Initially, there are a total of $k$ coins on the chessboard where each coin is only loaded exactly on one square and each square can contain coins or blanks. At each turn. You must select exactly one plot that holds the minimum number of coins in the number of neighbors of the plot and then you must give exactly one coin to each neighbor of the selected plot. The game ends if you are no longer able to select squares with the intended conditions. The smallest number of $k$ so that the game never ends for any initial square selection is ....
10 replies
parmenides51
Nov 11, 2021
Mr.Awan
3 hours ago
Inequalities
sqing   5
N 4 hours ago by sqing
Let $ a,b,c,d\geq 0 ,a-b+d=21 $ and $ a+3b+4c=101 $. Prove that
$$ - \frac{1681}{3}\leq   ab - cd \leq 820$$$$ - \frac{16564}{9}\leq   ac -bd \leq 420$$$$ - \frac{10201}{48}\leq ad- bc \leq\frac{1681}{3}$$
5 replies
sqing
Yesterday at 3:53 AM
sqing
4 hours ago
high school math
aothatday   3
N 4 hours ago by aothatday
Let $x_n$ be a positive root of the equation $x_n^n=x^2+x+1$. Prove that the following sequence converges: $n^2(x_n-x_{ n+1})$
3 replies
aothatday
Thursday at 2:20 PM
aothatday
4 hours ago
No more topics!
<AA_ K=<BB_1M when B_1K//BC, A_1M//AC (Kharkiv City XI 2013 - Ukr)
parmenides51   3
N Mar 28, 2024 by kentok
In the triangle $ABC$, the heights $AA_1$ and $BB_1$ are drawn. On the side $AB$, points $M$ and $K$ are chosen so that $B_1K\parallel BC$ and $A_1 M\parallel  AC$. Prove that the angle $AA_1K$ is equal to the angle $BB_1M$.
3 replies
parmenides51
Mar 13, 2020
kentok
Mar 28, 2024
<AA_ K=<BB_1M when B_1K//BC, A_1M//AC (Kharkiv City XI 2013 - Ukr)
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30630 posts
#1
Y by
In the triangle $ABC$, the heights $AA_1$ and $BB_1$ are drawn. On the side $AB$, points $M$ and $K$ are chosen so that $B_1K\parallel BC$ and $A_1 M\parallel  AC$. Prove that the angle $AA_1K$ is equal to the angle $BB_1M$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ironball
110 posts
#2
Y by
$tan \angle MB_1B=\frac{AB_1 \cdot \frac{BA_1}{BC}}{h_B \cdot \frac{CA_1}{BC}}=  \frac{AB_1  \cdot  BA_1}{h_B  \cdot  CA_1}$
and $tan \angle KA_1A=\frac{BA_1 \cdot \frac{AB_1}{AC}}{h_A \cdot \frac{B_1C}{AC}} = \frac{BA_1 \cdot AB_1}{h_A \cdot B_1C}$

so to prove$\angle AA_1K=\angle BB_1M \Leftrightarrow$ to prove $\frac{h_B}{h_A}=\frac{B_1C}{A_1C}$

It comes from a pair of familiar similar triangle $\triangle AA_1C \sim \triangle BB_1C$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
modp
18 posts
#4 • 3 Y
Y by Mango247, Mango247, Mango247
The height AA1 + B1K//BC =>the angle A1EB1=90 .
For the same reason,if we make D and E the intersection of A1M and BB1,AA1 and B1K,the angle A1DB1=90. So the points A1,D,E,B1 are on the same circle => the angle DA1E=the angle DB1E.
B1FA1C is a parallelogram, and the angle A1AC = the angle CBB1.So:
MF/FK=AC/BC=(A1C/sin( A1AC ))/(B1C/sin( CBB1 ))=(B1F/sin( A1AC ))/(A1F/sin( CBB1 ))=B1F/A1F.
So MF*FA1=KF*FB1 => the points M,K,A1,B1 are on the same circle => the angle MA1K=the angle MB1K.
So the angle MA1K + the angle MA1E =the angle MB1K + the angle KB1D => the angle AA1K= the angle BB1M.(there is another situation:There is no intersection between line MA1 and line KB1,this time we need turn "+" into "-")
I don't konw how to send something like #2...
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kentok
61 posts
#5
Y by
Since $B_1K \parallel BC$, hence $\angle A_1BB_1=\angle CBB_1=\angle BB_1K$. Since $A_1M \parallel AC$, hence $\angle B_1AA_1=\angle CAA_1=\angle AA_1M$. We know that $AB_1A_1B$ siklik, so we have $\angle B_1AA_1=\angle A_1BB_1$, so now we have $\angle AA_1M=\angle BB_1K$.
Observe that
$$ \angle BMA_1=180^\circ-\angle MBA_1-\angle MA_1B=180^\circ-\angle CB_1A_1-\angle B_1CA_1=\angle CA_1B_1=\angle A_1B_1K$$So we have $A_1B_1KM$ cyclic. Hence $\angle MA_1K=\angle MB_1K$. So its proved that $\angle AA_1K=\angle BB_1M$.
This post has been edited 2 times. Last edited by kentok, Mar 28, 2024, 3:18 PM
Reason: latex
Z K Y
N Quick Reply
G
H
=
a