Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Ant wanna come to A
Rohit-2006   1
N 2 hours ago by Rohit-2006
An insect starts from $A$ and in $10$ steps and has to reach $A$ again. But in between one of the s steps and can't go $A$. Find probability. For example $ABCDCDEDEA$ is valid but $ABCDEDEDEA$ is not valid.
1 reply
Rohit-2006
2 hours ago
Rohit-2006
2 hours ago
one cyclic formed by two cyclic
CrazyInMath   31
N 2 hours ago by juckter
Source: EGMO 2025/3
Let $ABC$ be an acute triangle. Points $B, D, E$, and $C$ lie on a line in this order and satisfy $BD = DE = EC$. Let $M$ and $N$ be the midpoints of $AD$ and $AE$, respectively. Suppose triangle $ADE$ is acute, and let $H$ be its orthocentre. Points $P$ and $Q$ lie on lines $BM$ and $CN$, respectively, such that $D, H, M,$ and $P$ are concyclic and pairwise different, and $E, H, N,$ and $Q$ are concyclic and pairwise different. Prove that $P, Q, N,$ and $M$ are concyclic.
31 replies
CrazyInMath
Apr 13, 2025
juckter
2 hours ago
Divisibility NT FE
CHESSR1DER   10
N 2 hours ago by CHESSR1DER
Source: Own
Find all functions $f$ $N \rightarrow N$ such for any $a,b$:
$(a+b)|a^{f(b)} + b^{f(a)}$.
10 replies
CHESSR1DER
Yesterday at 7:07 PM
CHESSR1DER
2 hours ago
Prove that x1=x2=....=x2025
Rohit-2006   8
N 3 hours ago by Project_Donkey_into_M4
Source: A mock
The real numbers $x_1,x_2,\cdots,x_{2025}$ satisfy,
$$x_1+x_2=2\bar{x_1}, x_2+x_3=2\bar{x_2},\cdots, x_{2025}+x_1=2\bar{x_{2025}}$$Where {$\bar{x_1},\cdots,\bar{x_{2025}}$} is a permutation of $x_1,x_2,\cdots,x_{2025}$. Prove that $x_1=x_2=\cdots=x_{2025}$
8 replies
Rohit-2006
Apr 9, 2025
Project_Donkey_into_M4
3 hours ago
IMO 2011 Problem 4
Amir Hossein   92
N 3 hours ago by LobsterJuice
Let $n > 0$ be an integer. We are given a balance and $n$ weights of weight $2^0, 2^1, \cdots, 2^{n-1}$. We are to place each of the $n$ weights on the balance, one after another, in such a way that the right pan is never heavier than the left pan. At each step we choose one of the weights that has not yet been placed on the balance, and place it on either the left pan or the right pan, until all of the weights have been placed.
Determine the number of ways in which this can be done.

Proposed by Morteza Saghafian, Iran
92 replies
Amir Hossein
Jul 19, 2011
LobsterJuice
3 hours ago
Squares in an Octagon
kred9   1
N 3 hours ago by crazydog
Source: 2025 Utah Math Olympiad #1
A regular octagon and all of its diagonals are drawn. Find, with proof, the number of squares that appear in the resulting diagram. (The side of each square must lie along one of the edges or diagonals of the octagon.)
1 reply
kred9
Apr 5, 2025
crazydog
3 hours ago
quadratic with at least 1 roots
giangtruong13   1
N 3 hours ago by CM1910
Find $m$ to satisfy that the equation $x^2+mx-1=0$ has at least 1 roots $\leq -2$
1 reply
giangtruong13
5 hours ago
CM1910
3 hours ago
sequence infinitely similar to central sequence
InterLoop   18
N 3 hours ago by X.Allaberdiyev
Source: EGMO 2025/2
An infinite increasing sequence $a_1 < a_2 < a_3 < \dots$ of positive integers is called central if for every positive integer $n$, the arithmetic mean of the first $a_n$ terms of the sequence is equal to $a_n$.

Show that there exists an infinite sequence $b_1$, $b_2$, $b_3$, $\dots$ of positive integers such that for every central sequence $a_1$, $a_2$, $a_3$, $\dots$, there are infinitely many positive integers $n$ with $a_n = b_n$.
18 replies
InterLoop
Apr 13, 2025
X.Allaberdiyev
3 hours ago
how many quadrilaterals ?
Ecrin_eren   6
N 3 hours ago by mathprodigy2011
"All the diagonals of an 11-gon are drawn. How many quadrilaterals can be formed using these diagonals as sides? (The vertices of the quadrilaterals are selected from the vertices of the 11-gon.)"
6 replies
Ecrin_eren
Apr 13, 2025
mathprodigy2011
3 hours ago
all solutions of (p,n)
Sayan   11
N 3 hours ago by L13832
Source: ItaMO 2011, P5
Determine all solutions $(p,n)$ of the equation
\[n^3=p^2-p-1\]
where $p$ is a prime number and $n$ is an integer
11 replies
Sayan
Feb 14, 2012
L13832
3 hours ago
Number Theory Chain!
JetFire008   55
N 4 hours ago by Lil_flip38
I will post a question and someone has to answer it. Then they have to post a question and someone else will answer it and so on. We can only post questions related to Number Theory and each problem should be more difficult than the previous. Let's start!

Question 1
55 replies
JetFire008
Apr 7, 2025
Lil_flip38
4 hours ago
Plane geometry problem with inequalities
ReticulatedPython   3
N Today at 2:48 PM by vanstraelen
Let $A$ and $B$ be points on a plane such that $AB=1.$ Let $P$ be a point on that plane such that $$\frac{AP^2+BP^2}{(AP)(BP)}=3.$$Prove that $$AP \in \left[\frac{5-\sqrt{5}}{10}, \frac{-1+\sqrt{5}}{2}\right] \cup \left[\frac{5+\sqrt{5}}{10}, \frac{1+\sqrt{5}}{2}\right].$$
Source: Own
3 replies
ReticulatedPython
Apr 10, 2025
vanstraelen
Today at 2:48 PM
Inequalities
sqing   1
N Today at 1:55 PM by sqing
Let $   a,b    $ be reals such that $  a^2-ab+b^2 =3$ . Prove that
$$  \frac{13}{ 10 }> \frac{1}{ a^2+1 }+ \frac{1}{ b^2+1 } \geq \frac{1}{ 2 }$$$$   \frac{6}{ 5 }>\frac{1}{ a^4+1 }+ \frac{1}{ b^4+1 } \geq   \frac{1}{ 5 }$$$$  \frac{1}{ a^6+1 }+ \frac{1}{ b^6+1 } \geq   \frac{1}{ 14 }$$
1 reply
sqing
Today at 8:59 AM
sqing
Today at 1:55 PM
idk12345678 Math Contest
idk12345678   21
N Today at 1:25 PM by idk12345678
Welcome to the 1st idk12345678 Math Contest.
You have 4 hours. You do not have to prove your answers.
Post \signup username to sign up. Post your answers in a hide tag and I will tell you your score.*


The contest is attached to the post

Clarifications

*I mightve done them wrong feel free to ask about an answer
21 replies
idk12345678
Apr 10, 2025
idk12345678
Today at 1:25 PM
point P lies on the line segment QR wanted 2016 Estonia Open Junior 2.5
parmenides51   1
N Oct 15, 2020 by natmath
On the plane three different points $P, Q$, and $R$ are chosen. It is known that however one chooses another point $X$ on the plane, the point $P$ is always either closer to $X$ than the point $Q$ or closer to $X$ than the point $R$. Prove that the point $P$ lies on the line segment $QR$.
1 reply
parmenides51
Oct 15, 2020
natmath
Oct 15, 2020
point P lies on the line segment QR wanted 2016 Estonia Open Junior 2.5
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30630 posts
#1
Y by
On the plane three different points $P, Q$, and $R$ are chosen. It is known that however one chooses another point $X$ on the plane, the point $P$ is always either closer to $X$ than the point $Q$ or closer to $X$ than the point $R$. Prove that the point $P$ lies on the line segment $QR$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
natmath
8219 posts
#2
Y by
Draw the perpendicular bisectors of $PQ$ and $PR$. The relative distance of $X$ to the pair of points is determined by which side of the perp bisector it lies on. If the 2 perpendicular bisectors have an intersection, there exists 4 sectors, one of which is always closer to $P$ than $Q$ or $R$.

For our claim to be true, this means that the perpendicular bisectors do not intersect (i.e. they are parallel) which means $P$ lies on line $QR$. It is trivial to show that it must be between $Q$ and $R$
Z K Y
N Quick Reply
G
H
=
a