Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
2019 SMT Team Round - Stanford Math Tournament
parmenides51   16
N 2 hours ago by dangdao12
p1. Given $x + y = 7$, find the value of x that minimizes $4x^2 + 12xy + 9y^2$.


p2. There are real numbers $b$ and $c$ such that the only $x$-intercept of $8y = x^2 + bx + c$ equals its $y$-intercept. Compute $b + c$.



p3. Consider the set of $5$ digit numbers $ABCDE$ (with $A \ne 0$) such that $A+B = C$, $B+C = D$, and $C + D = E$. What’s the size of this set?


p4. Let $D$ be the midpoint of $BC$ in $\vartriangle ABC$. A line perpendicular to D intersects $AB$ at $E$. If the area of $\vartriangle ABC$ is four times that of the area of $\vartriangle BDE$, what is $\angle ACB$ in degrees?


p5. Define the sequence $c_0, c_1, ...$ with $c_0 = 2$ and $c_k = 8c_{k-1} + 5$ for $k > 0$. Find $\lim_{k \to \infty} \frac{c_k}{8^k}$.


p6. Find the maximum possible value of $|\sqrt{n^2 + 4n + 5} - \sqrt{n^2 + 2n + 5}|$.


p7. Let $f(x) = \sin^8 (x) + \cos^8(x) + \frac38 \sin^4 (2x)$. Let $f^{(n)}$ (x) be the $n$th derivative of $f$. What is the largest integer $a$ such that $2^a$ divides $f^{(2020)}(15^o)$?


p8. Let $R^n$ be the set of vectors $(x_1, x_2, ..., x_n)$ where $x_1, x_2,..., x_n$ are all real numbers. Let $||(x_1, . . . , x_n)||$ denote $\sqrt{x^2_1 +... + x^2_n}$. Let $S$ be the set in $R^9$ given by $$S = \{(x, y, z) : x, y, z \in R^3 , 1 = ||x|| = ||y - x|| = ||z -y||\}.$$If a point $(x, y, z)$ is uniformly at random from $S$, what is $E[||z||^2]$?


p9. Let $f(x)$ be the unique integer between $0$ and $x - 1$, inclusive, that is equivalent modulo $x$ to $\left( \sum^2_{i=0} {{x-1} \choose i} ((x - 1 - i)! + i!) \right)$. Let $S$ be the set of primes between $3$ and $30$, inclusive. Find $\sum_{x\in S}^{f(x)}$.


p10. In the Cartesian plane, consider a box with vertices $(0, 0)$,$\left( \frac{22}{7}, 0\right)$,$(0, 24)$,$\left( \frac{22}{7}, 4\right)$. We pick an integer $a$ between $1$ and $24$, inclusive, uniformly at random. We shoot a puck from $(0, 0)$ in the direction of $\left( \frac{22}{7}, a\right)$ and the puck bounces perfectly around the box (angle in equals angle out, no friction) until it hits one of the four vertices of the box. What is the expected number of times it will hit an edge or vertex of the box, including both when it starts at $(0, 0)$ and when it ends at some vertex of the box?


p11. Sarah is buying school supplies and she has $\$2019$. She can only buy full packs of each of the following items. A pack of pens is $\$4$, a pack of pencils is $\$3$, and any type of notebook or stapler is $\$1$. Sarah buys at least $1$ pack of pencils. She will either buy $1$ stapler or no stapler. She will buy at most $3$ college-ruled notebooks and at most $2$ graph paper notebooks. How many ways can she buy school supplies?


p12. Let $O$ be the center of the circumcircle of right triangle $ABC$ with $\angle ACB = 90^o$. Let $M$ be the midpoint of minor arc $AC$ and let $N$ be a point on line $BC$ such that $MN \perp BC$. Let $P$ be the intersection of line $AN$ and the Circle $O$ and let $Q$ be the intersection of line $BP$ and $MN$. If $QN = 2$ and $BN = 8$, compute the radius of the Circle $O$.


p13. Reduce the following expression to a simplified rational $$\frac{1}{1 - \cos \frac{\pi}{9}}+\frac{1}{1 - \cos \frac{5 \pi}{9}}+\frac{1}{1 - \cos \frac{7 \pi}{9}}$$

p14. Compute the following integral $\int_0^{\infty} \log (1 + e^{-t})dt$.


p15. Define $f(n)$ to be the maximum possible least-common-multiple of any sequence of positive integers which sum to $n$. Find the sum of all possible odd $f(n)$


PS. You should use hide for answers. Collected here.
16 replies
parmenides51
Feb 6, 2022
dangdao12
2 hours ago
Inequalities
sqing   4
N 2 hours ago by lbh_qys
Let $ a,b> 0 $ and $ a^2+ b^2+a+b= 2 . $ Prove that
$$ \frac{a^5}{a^5+ b^3}+ \frac{b^5}{b^5+ a^3}\leq 1$$
4 replies
sqing
Apr 3, 2025
lbh_qys
2 hours ago
Might be the first equation marathon
steven_zhang123   34
N 2 hours ago by rchokler
As far as I know, it seems that no one on HSM has organized an equation marathon before. Click to reveal hidden textSo why not give it a try? Click to reveal hidden text Let's start one!
Some basic rules need to be clarified:
$\cdot$ If a problem has not been solved within $5$ days, then others are eligible to post a new probkem.
$\cdot$ Not only simple one-variable equations, but also systems of equations are allowed.
$\cdot$ The difficulty of these equations should be no less than that of typical quadratic one-variable equations. If the problem involves higher degrees or more variables, please ensure that the problem is solvable (i.e., has a definite solution, rather than an approximate one).
$\cdot$ Please indicate the domain of the solution to the equation (e.g., solve in $\mathbb{R}$, solve in $\mathbb{C}$).
Here's an simple yet fun problem, hope you enjoy it :P :
P1
34 replies
steven_zhang123
Jan 20, 2025
rchokler
2 hours ago
Inequalities
sqing   8
N 2 hours ago by pieMax2713
Let $a,b$ be real numbers such that $ a^2+b^2+a^3 +b^3=4   . $ Prove that
$$a+b \leq 2$$Let $a,b$ be real numbers such that $a+b + a^2+b^2+a^3 +b^3=6 . $ Prove that
$$a+b \leq 2$$
8 replies
1 viewing
sqing
Apr 5, 2025
pieMax2713
2 hours ago
No more topics!
2009 points on line AB not in [AB], diff. sums (2009 Moldova NMO 7.3)
parmenides51   2
N Mar 25, 2021 by donian9265
On the lines $AB$ are located $2009$ different points that do not belong to the segment $[AB]$. Prove that the sum of the distances from point $A$ to these points is not equal to the sum of the distances from point $B$ to these points.
2 replies
parmenides51
Mar 25, 2021
donian9265
Mar 25, 2021
2009 points on line AB not in [AB], diff. sums (2009 Moldova NMO 7.3)
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30630 posts
#1 • 1 Y
Y by Mango247
On the lines $AB$ are located $2009$ different points that do not belong to the segment $[AB]$. Prove that the sum of the distances from point $A$ to these points is not equal to the sum of the distances from point $B$ to these points.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Aaryabhatta1
1631 posts
#2 • 3 Y
Y by Mango247, Mango247, Mango247
Solution?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
donian9265
541 posts
#3
Y by
sol

Oops, now I'm reading @above's solution and they are pretty much exactly the same.
Z K Y
N Quick Reply
G
H
=
a