Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a June Highlights and 2025 AoPS Online Class Information
jlacosta   0
Jun 2, 2025
Congratulations to all the mathletes who competed at National MATHCOUNTS! If you missed the exciting Countdown Round, you can watch the video at this link. Are you interested in training for MATHCOUNTS or AMC 10 contests? How would you like to train for these math competitions in half the time? We have accelerated sections which meet twice per week instead of once starting on July 8th (7:30pm ET). These sections fill quickly so enroll today!

[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC 10 Problem Series[/list]
For those interested in Olympiad level training in math, computer science, physics, and chemistry, be sure to enroll in our WOOT courses before August 19th to take advantage of early bird pricing!

Summer camps are starting this month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have a transformative summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]June 5th, Thursday, 7:30pm ET: Open Discussion with Ben Kornell and Andrew Sutherland, Art of Problem Solving's incoming CEO Ben Kornell and CPO Andrew Sutherland host an Ask Me Anything-style chat. Come ask your questions and get to know our incoming CEO & CPO!
[*]June 9th, Monday, 7:30pm ET, Game Jam: Operation Shuffle!, Come join us to play our second round of Operation Shuffle! If you enjoy number sense, logic, and a healthy dose of luck, this is the game for you. No specific math background is required; all are welcome.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Jun 22 - Nov 2
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Wednesday, Sep 24 - Dec 17

Precalculus
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Wednesday, Jun 25 - Dec 17
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Monday, Jun 30 - Jul 21
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Sunday, Jun 22 - Sep 21
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Wednesday, Jun 11 - Aug 27
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Sunday, Jun 22 - Sep 1
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Monday, Jun 23 - Dec 15
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Jun 2, 2025
0 replies
Painting Beads on Necklace
amuthup   47
N a minute ago by ezpotd
Source: 2021 ISL C2
Let $n\ge 3$ be a fixed integer. There are $m\ge n+1$ beads on a circular necklace. You wish to paint the beads using $n$ colors, such that among any $n+1$ consecutive beads every color appears at least once. Find the largest value of $m$ for which this task is $\emph{not}$ possible.

Carl Schildkraut, USA
47 replies
amuthup
Jul 12, 2022
ezpotd
a minute ago
Onto the altitude'
TheUltimate123   4
N 7 minutes ago by EpicBird08
Source: Extension of nukelauncher's and my Mock AIME #15 (https://artofproblemsolving.com/community/c875089h1825979p12212193)
In triangle $ABC$, let $D$, $E$, and $F$ denote the feet of the altitudes from $A$, $B$, and $C$, respectively, and let $O$ denote the circumcenter of $\triangle ABC$. Points $X$ and $Y$ denote the projections of $E$ and $F$, respectively, onto $\overline{AD}$, and $Z=\overline{AO}\cap\overline{EF}$. There exists a point $T$ such that $\angle DTZ=90^\circ$ and $AZ=AT$. If $P=\overline{AD}\cap\overline{ZT}$ and $Q$ lies on $\overline{EF}$ such that $\overline{PQ}\parallel\overline{BC}$, prove that line $AQ$ bisects $\overline{BC}$.
4 replies
TheUltimate123
May 19, 2019
EpicBird08
7 minutes ago
The Bank of Oslo
mathisreaI   60
N 9 minutes ago by ezpotd
Source: IMO 2022 Problem 1
The Bank of Oslo issues two types of coin: aluminum (denoted A) and bronze (denoted B). Marianne has $n$ aluminum coins and $n$ bronze coins arranged in a row in some arbitrary initial order. A chain is any subsequence of consecutive coins of the same type. Given a fixed positive integer $k \leq 2n$, Gilberty repeatedly performs the following operation: he identifies the longest chain containing the $k^{th}$ coin from the left and moves all coins in that chain to the left end of the row. For example, if $n=4$ and $k=4$, the process starting from the ordering $AABBBABA$ would be $AABBBABA \to BBBAAABA \to AAABBBBA \to BBBBAAAA \to ...$

Find all pairs $(n,k)$ with $1 \leq k \leq 2n$ such that for every initial ordering, at some moment during the process, the leftmost $n$ coins will all be of the same type.
60 replies
mathisreaI
Jul 13, 2022
ezpotd
9 minutes ago
2-var inequality
sqing   2
N 23 minutes ago by Rohit-2006
Source: Own
Let $ a,b\geq 0 $ and $\frac{1}{a^2+3} + \frac{1}{b^2+3} -ab\leq  \frac{1}{2}.$ Prove that
$$  a^2+ab+b^2 \geq \frac{3(\sqrt{57}-7)}{4}$$Let $ a,b\geq 0 $ and $\frac{a}{b^2+3} + \frac{b}{a^2+3} +ab\leq  \frac{1}{2}.$ Prove that
$$  a^2+ab+b^2 \leq \frac{9}{4}$$Let $ a,b\geq 0 $ and $ \frac{a}{b^3+3}+\frac{b}{a^3+3}-ab\leq  \frac{1}{2}.$ Prove that
$$  a^2+ab+b^2 \geq \frac{9}{4}$$
2 replies
sqing
Yesterday at 12:55 PM
Rohit-2006
23 minutes ago
No more topics!
Iranian Geometry Olympiad (3)
MRF2017   5
N Sep 13, 2016 by Mathlinkeraa
Source: IGO 2016,Advanced level,P3
In a convex qualrilateral $ABCD$, let $P$ be the intersection point of $AD$ and $BC$. Suppose that $I_1$ and $I_2$ are the incenters of triangles $PAB$ and $PDC$,respectively. Let $O$ be the circumcenter of $PAB$, and $H$ the orthocenter of $PDC$. Show that the circumcircles of triangles $AI_1B$ and $DHC$ are tangent together if and only if the circumcircles of triangles $AOB$ and $DI_2C$ are tangent together.
Proposed by Hooman Fattahimoghaddam
5 replies
MRF2017
Sep 13, 2016
Mathlinkeraa
Sep 13, 2016
Iranian Geometry Olympiad (3)
G H J
G H BBookmark kLocked kLocked NReply
Source: IGO 2016,Advanced level,P3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MRF2017
237 posts
#1 • 4 Y
Y by Adventure10, Mango247, TheHimMan, Rounak_iitr
In a convex qualrilateral $ABCD$, let $P$ be the intersection point of $AD$ and $BC$. Suppose that $I_1$ and $I_2$ are the incenters of triangles $PAB$ and $PDC$,respectively. Let $O$ be the circumcenter of $PAB$, and $H$ the orthocenter of $PDC$. Show that the circumcircles of triangles $AI_1B$ and $DHC$ are tangent together if and only if the circumcircles of triangles $AOB$ and $DI_2C$ are tangent together.
Proposed by Hooman Fattahimoghaddam
This post has been edited 1 time. Last edited by MRF2017, Sep 13, 2016, 5:06 AM
Reason: A typo edited!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
drmzjoseph
445 posts
#2 • 2 Y
Y by Adventure10, Mango247
Typo: $P$ is the intersection of the rays $CB$ and $DA$ ...
This post has been edited 1 time. Last edited by drmzjoseph, Sep 13, 2016, 4:26 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MRF2017
237 posts
#3 • 2 Y
Y by Adventure10, Mango247
drmzjoseph wrote:
Typo: $P$ is the intersection of the rays $CB$ and $DA$ ...

Thanks,edited :P
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
andria
824 posts
#4 • 9 Y
Y by Smkh, Siddharth03, hakN, Infinityfun, Adventure10, Mango247, Stuffybear, Om245, TheHimMan
Let $X$ be one of intersection of circumcircles of triangles $AOB$ and $CI_2D$. Let $\odot(\triangle BXC)\cap \odot(\triangle AXD)=\{X,Y\}$:

$\left.\begin{array}{ccc}
\angle AYB=\angle XDP+\angle XCP=\angle DXC-\angle P=\angle DI_2C-\angle P=90^{\circ}-\frac{\angle P}{2}\Longrightarrow Y\in \odot(\triangle AI_1B)\\ \\
\angle DYC=\angle XAD+\angle XBC=\angle BXA+\angle P=180^{\circ}-\angle AOB+\angle P=180^{\circ}-\angle P\Longrightarrow Y\in \odot(\triangle DHC)
\end{array}\right\}\Longrightarrow Y$ is one of intersection of circumcircles of $AI_1B,DHC$ and $Y=\odot(BXD)\cap \odot(AXD)$

Similarly we can prove if $X'$ is second intrsection of circumcircles $AOB$ and $CI_2D$ and $Y'$ be the second intersection of circumcircles $DHC,AI_1B$ then $AX'Y'D,BX'Y'C$ are cyclic. Hence:

$\begin{cases}
AXYD,BXYC\ \text{are cyclic}\\ \\
AX'Y'D,BX'Y'C\ \text{are cyclic}\end{cases}$

So the circumcircles of $AOB$ and $DI_2C$ are tangent $\Longleftrightarrow\ X=X'\Longleftrightarrow Y=Y'\Longleftrightarrow$ circumcircles of $DHC,AI_1B$ are tangent.
Q.E.D
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
blackSnoopy
1 post
#5 • 1 Y
Y by Adventure10
I have another idea
Idea: two circles are tangent iff the distance between centers be equal with the sum of radiuses.
And hopefully the centers of these circles and their radiuses are well known.
Can someone complete this idea, please?
(This is urgent for me)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathlinkeraa
14 posts
#6 • 2 Y
Y by Adventure10, Mango247
blackSnoopy wrote:
I have another idea
Idea: two circles are tangent iff the distance between centers be equal with the sum of radiuses.
And hopefully the centers of these circles and their radiuses are well known.
Can someone complete this idea, please?
(This is urgent for me)

this is such a nice idea , can anyone solve this problem in this way ?
Z K Y
N Quick Reply
G
H
=
a