We have your learning goals covered with Spring and Summer courses available. Enroll today!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
9 Which math contest is your favorite?
mdk2013   17
N a minute ago by N3bula
mdk2013
Yesterday at 7:10 PM
N3bula
a minute ago
Tennessee Math Tournament (TMT) Online 2025
TennesseeMathTournament   61
N a minute ago by Jaxman8
Hello everyone! We are excited to announce a new competition, the Tennessee Math Tournament, created by the Tennessee Math Coalition! Anyone can participate in the virtual competition for free.

The testing window is from March 22nd to April 12th, 2025. Virtual competitors may participate in the competition at any time during that window.

The virtual competition consists of three rounds: Individual, Bullet, and Team. The Individual Round is 60 minutes long and consists of 30 questions (AMC 10 level). The Bullet Round is 20 minutes long and consists of 80 questions (Mathcounts Chapter level). The Team Round is 30 minutes long and consists of 16 questions (AMC 12 level). Virtual competitors may compete in teams of four, or choose to not participate in the team round.

To register and see more information, click here!

If you have any questions, please email connect@tnmathcoalition.org or reply to this thread!

Thank you to our lead sponsor, Jane Street!

IMAGE
61 replies
TennesseeMathTournament
Mar 9, 2025
Jaxman8
a minute ago
What to do...
jb2015007   25
N 4 minutes ago by yaxuan
im in 7th grade and took the AMC 10 A/B with absouletely nauseating score, which i will not reveal. I wasnt even close to AIME frankly. My goals are the following:
7th grade: AMC 8 - DHR
8th grade:AIME qual, AMC 8 Perfect
9th grade: AMC 10 DHR maybe?, AIME 7+
10th grade: USAJMO, AIME 12+, AMC 10 DHR
11th grade: USAMO, AIME 12+, AMC 12 DHR
12th grade: USAMO, AIME great score, AMC 12 perfect or close?
These are the goals that i want to achieve. I will do literally anything to achieve them. Can someone please give me a good tip so i can follow it for the next 5 years of my life to become a 3 time USAMO qual and a 5 time AIME qual, and have an perfect AMC 8 under my belt?
25 replies
jb2015007
Dec 14, 2024
yaxuan
4 minutes ago
Practice AMC 12A
freddyfazbear   73
N 20 minutes ago by jkim0656
Practice AMC 12A

1. Find the sum of the infinite geometric series 1 + 7/18 + 49/324 + …
A - 36/11, B - 9/22, C - 18/11, D - 18/7, E - 9/14

2. What is the first digit after the decimal point in the square root of 420?
A - 1, B - 2, C - 3, D - 4, E - 5

3. Two circles with radiuses 47 and 96 intersect at two points A and B. Let P be the point 82% of the way from A to B. A line is drawn through P that intersects both circles twice. Let the four intersection points, from left to right be W, X, Y, and Z. Find (PW/PX)*(PY/PZ).
A - 50/5863, B - 47/96, C - 1, D - 96/47, E - 5863/50

4. What is the largest positive integer that cannot be expressed in the form 6a + 9b + 4 + 20d, where a, b, and d are positive integers?
A - 29, B - 38, C - 43, D - 76, E - 82

5. What is the absolute difference of the probabilities of getting at least 6/10 on a 10-question true or false test and at least 3/5 on a 5-question true or false test?
A - 63/1024, B - 63/512, C - 63/256, D - 63/128, E - 0

6. How many arrangements of the letters in the word “sensor” are there such that the two vowels have an even number of letters (remember 0 is even) between them (including the original “sensor”)?
A - 72, B - 108, C - 144, D - 216, E - 432

7. Find the value of 0.9 * 0.97 + 0.5 * 0.1 * (0.5 * 0.97 + 0.5 * 0.2) rounded to the nearest tenth of a percent.
A - 89.9%, B - 90.0%, C - 90.1%, D - 90.2%, E - 90.3%

8. Two painters are painting a room. Painter 1 takes 52:36 to paint the room, and painter 2 takes 26:18 to paint the room. With these two painters working together, how long should the job take?
A - 9:16, B - 10:52, C - 17:32, D - 35:02, E - 39:44

9. Statistics show that people who work out n days a week have a (1/10)(n+2) chance of getting a 6-pack, and the number of people who exercise n days a week is directly proportional to 8 - n (Note that n can only be an integer from 0 to 7, inclusive). A random person is selected. Find the probability that they have a 6-pack.
A - 13/30, B - 17/30, C - 19/30, D - 23/30, E - 29/30

10. A factory must produce 3,000 items today. The manager of the factory initially calls over 25 employees, each producing 5 items per hour starting at 9 AM. However, he needs all of the items to be produced by 9 PM, and realizes that he must speed up the process. At 12 PM, the manager then encourages his employees to work faster by increasing their pay, in which they then all speed up to 6 items per hour. At 1 PM, the manager calls in 15 more employees which make 5 items per hour each. Unfortunately, at 3 PM, the AC stops working and the hot sun starts taking its toll, which slows every employee down by 2 items per hour. At 4 PM, the technician fixes the AC, and all employees return to producing 5 items per hour. At 5 PM, the manager calls in 30 more employees, which again make 5 items per hour. At 6 PM, he calls in 30 more employees. At 7 PM, he rewards all the pickers again, speeding them up to 6 items per hour. But at 8 PM, n employees suddenly crash out and stop working due to fatigue, and the rest all slow back down to 5 items per hour because they are tired. The manager does not have any more employees, so if too many of them drop out, he is screwed and will have to go overtime. Find the maximum value of n such that all of the items can still be produced on time, done no later than 9 PM.
A - 51, B - 52, C - 53, D - 54, E - 55

11. Two congruent right rectangular prisms stand near each other. Both have the same orientation and altitude. A plane that cuts both prisms into two pieces passes through the vertical axes of symmetry of both prisms and does not cross the bottom or top faces of either prism. Let the point that the plane crosses the axis of symmetry of the first prism be A, and the point that the plane crosses the axis of symmetry of the second prism be B. A is 81% of the way from the bottom face to the top face of the first prism, and B is 69% of the way from the bottom face to the top face of the second prism. What percent of the total volume of both prisms combined is above the plane?
A - 19%, B - 25%, C - 50%, D - 75%, E - 81%

12. On an analog clock, the minute hand makes one full revolution every hour, and the hour hand makes one full revolution every 12 hours. Both hands move at a constant rate. During which of the following time periods does the minute hand pass the hour hand?
A - 7:35 - 7:36, B - 7:36 - 7:37, C - 7:37 - 7:38, D - 7:38 - 7:39, E - 7:39 - 7:40

13. How many axes of symmetry does the graph of (x^2)(y^2) = 69 have?
A - 2, B - 3, C - 4, D - 5, E - 6

14. Let f(n) be the sum of the positive integer divisors of n. Find the sum of the digits of the smallest odd positive integer n such that f(n) is greater than 2n.
A - 15, B - 18, C - 21, D - 24, E - 27

15. A basketball has a diameter of 9 inches, and the hoop has a diameter of 18 inches. Peter decides to pick up the basketball and make a throw. Given that Peter has a 1/4 chance of accidentally hitting the backboard and missing the shot, but if he doesn’t, he is guaranteed that the frontmost point of the basketball will be within 18 inches of the center of the hoop at the moment when a great circle of the basketball crosses the plane containing the rim. No part of the ball will extend behind the backboard at any point during the throw, and the rim is attached directly to the backboard. What is the probability that Peter makes the shot?
A - 3/128, B - 3/64, C - 3/32, D - 3/16, E - 3/8

16. Amy purchases 6 fruits from a store. At the store, they have 5 of each of 5 different fruits. How many different combinations of fruits could Amy buy?
A - 210, B - 205, C - 195, D - 185, E - 180

17. Find the area of a cyclic quadrilateral with side lengths 6, 9, 4, and 2, rounded to the nearest integer.
A - 16, B - 19, C - 22, D - 25, E - 28

18. Find the slope of the line tangent to the graph of y = x^2 + x + 1 at the point (2, 7).
A - 2, B - 3, C - 4, D - 5, E - 6

19. Let f(n) = 4096n/(2^n). Find f(1) + f(2) + … + f(12).
A - 8142, B - 8155, C - 8162, D - 8169, E - 8178

20. Find the sum of all positive integers n greater than 1 and less than 16 such that (n-1)! + 1 is divisible by n.
A - 41, B - 44, C - 47, D - 50, E - 53

21. In a list of integers where every integer in the list ranges from 1 to 200, inclusive, and the chance of randomly drawing an integer n from the list is proportional to n if n <= 100 and to 201 - n if n >= 101, what is the sum of the numerator and denominator of the probability that a random integer drawn from the list is greater than 30, when expressed as a common fraction in lowest terms?
A - 1927, B - 2020, C - 2025, D - 3947, E - 3952

22. In a small town, there were initially 9 people who did not have a certain bacteria and 3 people who did. Denote this group to be the first generation. Then those 12 people would randomly get into 6 pairs and reproduce, making the second generation, consisting of 6 people. Then the process repeats for the second generation, where they get into 3 pairs. Of the 3 people in the third generation, what is the probability that exactly one of them does not have the bacteria? Assume that if at least one parent has the bacteria, then the child is guaranteed to get it.
A - 8/27, B - 1/3, C - 52/135, D - 11/27, E - 58/135

23. Amy, Steven, and Melissa each start at the point (0, 0). Assume the coordinate axes are in miles. At t = 0, Amy starts walking along the x-axis in the positive x direction at 0.6 miles per hour, Steven starts walking along the y-axis in the positive y direction at 0.8 miles per hour, and Melissa starts walking along the x-axis in the negative x direction at 0.4 miles per hour. However, a club that does not like them patrols the circumference of the circle x^2 + y^2 = 1. Three officers of the club, equally spaced apart on the circumference of the circle, walk counterclockwise along its circumference and make one revolution every hour. At t = 0, one of the officers of the club is at (1, 0). Any of Amy, Steven, and Melissa will be caught by the club if they walk within 50 meters of one of their 3 officers. How many of the three will be caught by the club?
A - 0, B - 1, C - 2, D - 3, E - Not enough info to determine

24.
A list of 9 positive integers consists of 100, 112, 122, 142, 152, and 160, as well as a, b, and c, with a <= b <= c. The range of the list is 70, both the mean and median are multiples of 10, and the list has a unique mode. How many ordered triples (a, b, c) are possible?
A - 1, B - 2, C - 3, D - 4, E - 5

25. What is the integer closest to the value of tan(83)? (The 83 is in degrees)
A - 2, B - 3, C - 4, D - 6, E - 8
73 replies
freddyfazbear
Mar 28, 2025
jkim0656
20 minutes ago
No more topics!
so what's an excircle?
Vfire   50
N Mar 26, 2025 by daijobu
Source: 2019 AIME I #11
In $\triangle ABC$, the sides have integers lengths and $AB=AC$. Circle $\omega$ has its center at the incenter of $\triangle ABC$. An excircle of $\triangle ABC$ is a circle in the exterior of $\triangle ABC$ that is tangent to one side of the triangle and tangent to the extensions of the other two sides. Suppose that the excircle tangent to $\overline{BC}$ is internally tangent to $\omega$, and the other two excircles are both externally tangent to $\omega$. Find the minimum possible value of the perimeter of $\triangle ABC$.
50 replies
Vfire
Mar 14, 2019
daijobu
Mar 26, 2025
so what's an excircle?
G H J
G H BBookmark kLocked kLocked NReply
Source: 2019 AIME I #11
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Archimedes15
1491 posts
#39 • 2 Y
Y by Adventure10, Mango247
When you see the topic is "whats an excircle" and you almost answer that question and then you look at the post and you see the problem and you go "gosh darn"

doable but super hard.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Grizzy
920 posts
#40 • 1 Y
Y by Adventure10
Nvr mind
This post has been edited 1 time. Last edited by Grizzy, Sep 4, 2019, 3:38 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
gary2003
1985 posts
#42
Y by
Yo in the wiki solution two how do you know Ia A and Ib are collinear?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
v_Enhance
6870 posts
#43 • 2 Y
Y by v4913, HamstPan38825
gary2003 wrote:
Yo in the wiki solution two how do you know Ia A and Ib are collinear?

If you mean $I_b$, $I_c$, $A$, it is true because $I_b$ and $I_c$ lie on the external angle bisector of $\angle A$. This holds even without the condition that $AB=AC$. In the isosceles case, the external angle bisector is also parallel to $BC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
wolfpack
1274 posts
#44
Y by
chapter 4 egmo :D
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
gary2003
1985 posts
#45
Y by
wolfpack wrote:
chapter 4 egmo :D

Whoops I shouldnt have stopped reading that book(sorry @v_Enhance)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MarkBcc168
1594 posts
#46 • 2 Y
Y by celestialphoenix3768, sargamsujit
Here is a super-slick synthetic solution.

Let $\omega_a, \omega_b, \omega_c$ be the three excircles, and let $T_a, T_b, T_c$ be the tangency points of $\omega$ with $\omega_a, \omega_b, \omega_c$, respectively. Let $I$ be the incenter of $\triangle ABC$, and $I_a$ be the center of $\omega_a$.

By Monge's theorem on $\omega$, $\omega_a$, $\omega_c$, we obtain that $T_cT_a$ passes through the insimilicenter, $B$, of $\omega_a$ and $\omega_c$. Similarly, $C\in T_aT_b$.

Now, here is the key observation. Let $X$ be the reflection of $T_a$ across $BC$. Notice that the line $BX\parallel T_bT_a$ subtends equal angles to $BI$ and $AI$. Thus, it also subtends equal angles to $BI_a$ and $BC$. This means that $X$ is the excenter of $\triangle BI_aC$. Alternatively, one can also perform a direct angle chasing to arrive at this.

WLOG, let $BC=2$. Thus, in $\triangle BI_aC$, we have $r_a = 2h_a \implies 2 = 2(b+c-2)$, but $BI_a=I_aC$ so we find that $BI_a = 1.5$. Finally, let $\angle ABC = 2\theta$; thus, $\angle BI_aI = \theta$ or $\sin\theta = \tfrac{2}{3}$. Using trigonometric identity, we find that
$$\cos 2\theta = 1 - 2\sin^2\theta = \frac{1}{9},$$or $AB=AC=9$. Thus, the answer is $2+9+9=20$.
This post has been edited 1 time. Last edited by MarkBcc168, Jan 14, 2021, 3:57 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IAmTheHazard
5000 posts
#47
Y by
Here is a slightly different solution for people who are trignometrically and geometrically challenged and are thus unable to touch anything with a $\cos$ in it or notice that $I_B,A,_IC$ are collinear. Honestly, it's pretty clean and were it not for the 15 silly mistakes I made while doing this it's fairly quick as well:
Solution

Unfortunately, while doing this I made various mistakes such as thinking $(x+1)-x=2$...
This post has been edited 1 time. Last edited by IAmTheHazard, Jan 22, 2021, 1:38 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
samrocksnature
8791 posts
#48 • 1 Y
Y by Mango247
This is a MONSTER
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RandomlyQuestioning
408 posts
#49
Y by
@above it is, but it's a really good/satisfying problem
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Infinity-Mod-One
7 posts
#50
Y by
this has a horrifying diagram
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
brainfertilzer
1831 posts
#51
Y by
bruh wth this took me like 30 minutes + 2 pages of bash.

solution
This post has been edited 1 time. Last edited by brainfertilzer, Sep 11, 2022, 7:13 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Danielzh
481 posts
#52
Y by
Me when I try to bash: $8a^4+20a^3b-4a^2b^2-4ab^3+b^4=0$ plugging in the answer doesn't even make sense lmao
This post has been edited 1 time. Last edited by Danielzh, Jul 7, 2023, 7:36 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
eg4334
617 posts
#53
Y by
Definetly the hardest problem on this geo-infested AIME. Hard to call this geo when I didn't even draw a diagram.

The radius if it were internally tangent to $\omega_A$ would be $r+ 2 R_A$ where $R_A$ is the excircle radius and $r$ is the incircle. The radius if it were externally tangent to $\omega_B$ would be $II_B - R_B$. Dropping altitudes from $I, I_B$ to $AB$ we get that the distance is $\sqrt{(r+R_B)^2 + (b - 2(s-b))^2}$ using standard excircle and incircle tangency distance lemmas. Rearranging, $$((r+R_B) + 2R_A)^2 = (r+R_B)^2 + (a-b)^2$$. From here we use that $r = \frac{A}{s}$, $R_A = \frac{A}{s-a}$, $R_B = \frac{A}{s-b}$ which makes it into $$4s(s-a)(s-b)^2 \left( \frac{1}{(s-a)^2} + \frac{1}{s(s-a)} + \frac{1}{(s-a)(s-b)} \right) = (a-b)^2$$Using $s=b+\frac{a}{2}$, we can exhaustingly turn this into $9a=2b$ in which the answer of $\boxed{20}$ is apparent.
This post has been edited 1 time. Last edited by eg4334, Jan 21, 2025, 2:06 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
daijobu
524 posts
#54
Y by
Video Solution
Z K Y
N Quick Reply
G
H
=
a