Y by Adventure10, Mango247
Given integer
larger than
, solve the system of equations (assuming
, for
):
![\[ \begin{cases} \displaystyle x_1+ \phantom{2^2} x_2+ \phantom{3^2} x_3 + \cdots + \phantom{n^2} x_n &= n+2, \\ x_1 + 2\phantom{^2}x_2 + 3\phantom{^2}x_3 + \cdots + n\phantom{^2}x_n &= 2n+2, \\ x_1 + 2^2x_2 + 3^2 x_3 + \cdots + n^2x_n &= n^2 + n +4, \\ x_1+ 2^3x_2 + 3^3x_3+ \cdots + n^3x_n &= n^3 + n + 8. \end{cases} \]](//latex.artofproblemsolving.com/0/8/f/08fc55e0cc886c4c44f678e75eb07e4d814c4a77.png)




![\[ \begin{cases} \displaystyle x_1+ \phantom{2^2} x_2+ \phantom{3^2} x_3 + \cdots + \phantom{n^2} x_n &= n+2, \\ x_1 + 2\phantom{^2}x_2 + 3\phantom{^2}x_3 + \cdots + n\phantom{^2}x_n &= 2n+2, \\ x_1 + 2^2x_2 + 3^2 x_3 + \cdots + n^2x_n &= n^2 + n +4, \\ x_1+ 2^3x_2 + 3^3x_3+ \cdots + n^3x_n &= n^3 + n + 8. \end{cases} \]](http://latex.artofproblemsolving.com/0/8/f/08fc55e0cc886c4c44f678e75eb07e4d814c4a77.png)
This post has been edited 1 time. Last edited by Amir Hossein, May 12, 2023, 11:04 PM
Reason: Prettified
Reason: Prettified