Y by evt917, pingpongmerrily, valenbb, clarkculus, alexanderhamilton124, At777, GodGodGodGodGoose, Erratum
There are math questions at the end of the post.
Celebrating 22nd December
And as a result I am quitting AoPS (atleast as of now)
Why?
I will probably update my blog(?).
So yeah this concludes this post(?). I probably have not written whatever I wanted to but AoPS has been basically the website I have been the most active on for the past year so leaving this hurts. (Not like I am going for forever lol)
Anyways as promised here are a "few" (not so original) questions.
Questions
Celebrating 22nd December
Today is the birthday of our beloved Srinivasa Ramanujan Aiyangar and also India's National Mathematics Day! (not a coincidence!). But coincidently, it is my AoPS account's birthday too! (I swear it was a coincidence!). My account has turned exactly
year today and has
posts as of now (excluding this) and has received
upvotes.



And as a result I am quitting AoPS (atleast as of now)
Why?
I have a big exam upcoming in the next
months and it is probably the biggest exam I have ever given. So yeah I need to prepare for that and I think I should not spend much time on AoPS anymore as of now. I will probably join AoPS after
months. I know no one asked but just in case you guys may be surprised as to why are there no more
billion HSM posts per day.



I will probably update my blog(?).
So yeah this concludes this post(?). I probably have not written whatever I wanted to but AoPS has been basically the website I have been the most active on for the past year so leaving this hurts. (Not like I am going for forever lol)
Anyways as promised here are a "few" (not so original) questions.
Questions
Geometry:
Here is a collection of geometry problems and solutions for new ideas:
Q1
S1![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -8.92, xmax = 8.92, ymin = -5.4, ymax = 5.4; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0);
draw((-3.26,3.82)--(-6.92,-1.34)--(6.76,-1.62)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((-3.26,3.82)--(-6.92,-1.34), linewidth(2) + zzttqq);
draw((-6.92,-1.34)--(6.76,-1.62), linewidth(2) + zzttqq);
draw((6.76,-1.62)--(-3.26,3.82), linewidth(2) + zzttqq);
draw((xmin, 48.857142857142854*xmin + 163.0942857142857)--(xmax, 48.857142857142854*xmax + 163.0942857142857), linewidth(2)); /* line */
draw((-3.26,3.82)--(-0.08,-1.48), linewidth(2));
/* dots and labels */
dot((-3.26,3.82),dotstyle);
label("$A$", (-3.18,4.02), NE * labelscalefactor);
dot((-6.92,-1.34),dotstyle);
label("$B$", (-6.84,-1.14), NE * labelscalefactor);
dot((6.76,-1.62),dotstyle);
label("$C$", (6.84,-1.42), NE * labelscalefactor);
label("$c$", (-5.36,1.44), NE * labelscalefactor,zzttqq);
label("$a$", (-0.1,-1.78), NE * labelscalefactor,zzttqq);
label("$b$", (1.9,1.4), NE * labelscalefactor,zzttqq);
label("$f$", (-3.08,4.92), NE * labelscalefactor);
dot((-3.36710245870117,-1.4127201251143038),linewidth(4pt) + dotstyle);
label("$D$", (-3.28,-1.26), NE * labelscalefactor);
dot((-0.08,-1.48),linewidth(4pt) + dotstyle);
label("$E$", (0,-1.32), NE * labelscalefactor);
label("$g$", (-1.96,1.02), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/2/7/4/274d0dbc781e3bc128d6477a45f887b2ed13f17b.png)
.
as
.
Using Internal Angle Bisector Theorem in
.
, or,
.
Using Pythagorean Theorem in
,
, or,
.
Using Pythagorean Theorem in
,
.
Thus
.
Thus the closest integer is
.
S1 by lbh_qys
Q2
S2






Q3
S3
Q4
S4![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -8.92, xmax = 8.92, ymin = -5.4, ymax = 5.4; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0);
draw((-3.58,2.26)--(-3.64,-3.22)--(1.84,-3.28)--(1.9,2.2)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((-3.58,2.26)--(-3.64,-3.22), linewidth(2) + zzttqq);
draw((-3.64,-3.22)--(1.84,-3.28), linewidth(2) + zzttqq);
draw((1.84,-3.28)--(1.9,2.2), linewidth(2) + zzttqq);
draw((1.9,2.2)--(-3.58,2.26), linewidth(2) + zzttqq);
draw((-3.5946697742558436,0.9201606179663049)--(1.8594891123393478,-1.499994406339482), linewidth(2));
draw((xmin, 2.253640296517657*xmin + 0.49841400936201097)--(xmax, 2.253640296517657*xmax + 0.49841400936201097), linewidth(2)); /* line */
draw((0.760574548844643,2.2124754611440354)--(-1.6595804754611438,-3.2416834254511557), linewidth(2));
draw((xmin, -0.010948905109489145*xmin-1.47963503649635)--(xmax, -0.010948905109489145*xmax-1.47963503649635), linewidth(2)); /* line */
draw((xmin, 91.33333333333121*xmin + 148.3333333333298)--(xmax, 91.33333333333121*xmax + 148.3333333333298), linewidth(2)); /* line */
/* dots and labels */
dot((-3.58,2.26),dotstyle);
label("$A$", (-3.5,2.46), NE * labelscalefactor);
dot((-3.64,-3.22),dotstyle);
label("$B$", (-3.56,-3.02), NE * labelscalefactor);
dot((1.84,-3.28),dotstyle);
label("$C$", (1.92,-3.08), NE * labelscalefactor);
dot((1.9,2.2),dotstyle);
label("$D$", (1.98,2.4), NE * labelscalefactor);
dot((-3.5946697742558436,0.9201606179663049),dotstyle);
label("$E$", (-3.52,1.12), NE * labelscalefactor);
dot((1.8594891123393478,-1.499994406339482),dotstyle);
label("$F$", (1.94,-1.3), NE * labelscalefactor);
label("$j$", (-1,-0.58), NE * labelscalefactor);
dot((-1.6595804754611438,-3.2416834254511557),dotstyle);
label("$G$", (-1.58,-3.04), NE * labelscalefactor);
label("$k$", (1.74,4.92), NE * labelscalefactor);
dot((0.760574548844643,2.2124754611440354),linewidth(4pt) + dotstyle);
label("$H$", (0.84,2.38), NE * labelscalefactor);
label("$l$", (-0.76,-0.38), NE * labelscalefactor);
label("$m$", (-8.76,-1.22), NE * labelscalefactor);
label("$n$", (-1.42,4.92), NE * labelscalefactor);
dot((-1.5995804754611425,2.238316574548844),linewidth(4pt) + dotstyle);
label("$I$", (-1.52,2.4), NE * labelscalefactor);
dot((-3.620510887660651,-1.4399944063394812),linewidth(4pt) + dotstyle);
label("$J$", (-3.54,-1.28), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/c/8/c/c8c25eae8a34b902f4eb033642872f74f9afe087.png)
We rename the points as per the diagram.
Let
and
.
Then,
as
, and
and
.
Thus the required length is
.
S4 by Mathzeus1024
Q5
S5
Q6
S6
Combinatorics:
Here is a collection of combinatorics problems and solutions for new ideas:
P1
S1 (Gap Method)
Q2
S2
Comment
Functional Equations:
Here are a few problems of Functional Equations:
Q1
S1
Q2
S2
Q3
S3
Here is a collection of geometry problems and solutions for new ideas:
Q1
In a triangle
, the altitude
and the median
divide
into three equal parts. If
, then the nearest integer to
is?






S1
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -8.92, xmax = 8.92, ymin = -5.4, ymax = 5.4; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0);
draw((-3.26,3.82)--(-6.92,-1.34)--(6.76,-1.62)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((-3.26,3.82)--(-6.92,-1.34), linewidth(2) + zzttqq);
draw((-6.92,-1.34)--(6.76,-1.62), linewidth(2) + zzttqq);
draw((6.76,-1.62)--(-3.26,3.82), linewidth(2) + zzttqq);
draw((xmin, 48.857142857142854*xmin + 163.0942857142857)--(xmax, 48.857142857142854*xmax + 163.0942857142857), linewidth(2)); /* line */
draw((-3.26,3.82)--(-0.08,-1.48), linewidth(2));
/* dots and labels */
dot((-3.26,3.82),dotstyle);
label("$A$", (-3.18,4.02), NE * labelscalefactor);
dot((-6.92,-1.34),dotstyle);
label("$B$", (-6.84,-1.14), NE * labelscalefactor);
dot((6.76,-1.62),dotstyle);
label("$C$", (6.84,-1.42), NE * labelscalefactor);
label("$c$", (-5.36,1.44), NE * labelscalefactor,zzttqq);
label("$a$", (-0.1,-1.78), NE * labelscalefactor,zzttqq);
label("$b$", (1.9,1.4), NE * labelscalefactor,zzttqq);
label("$f$", (-3.08,4.92), NE * labelscalefactor);
dot((-3.36710245870117,-1.4127201251143038),linewidth(4pt) + dotstyle);
label("$D$", (-3.28,-1.26), NE * labelscalefactor);
dot((-0.08,-1.48),linewidth(4pt) + dotstyle);
label("$E$", (0,-1.32), NE * labelscalefactor);
label("$g$", (-1.96,1.02), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/2/7/4/274d0dbc781e3bc128d6477a45f887b2ed13f17b.png)



Using Internal Angle Bisector Theorem in



Using Pythagorean Theorem in



Using Pythagorean Theorem in


Thus

Thus the closest integer is

S1 by lbh_qys
Let
be the circumcenter, then
, which indicates that
,
, and
are colinear. Therefore,
or
. However, when
,
and
coincide, and the angle is not trisected. Thus,
, and triangle
is a right-angled triangle. Consequently, the altitude divides the
angle into
and
, which implies the triangle is a right-angled triangle with angles
,
, and
. Therefore,
, and the closest integer is
.




















Q2
The sides
of a triangle satisfy the relations
and
. Then the measure of
, in degrees, is?




S2







Q3
Let
be a triangle in which
. From the vertex
, draw the altitude
to meet
at
. Assume that
and
. Then
equals?









S3
Let
.
(Pythagorean Theorem). Thus
and
(Pythagorean Theorem).




Q4
Let
be a square of side length
. Let
be points in the interiors of the sides
, respectively, such that
and
intersect at right angles. If
then find the length of
.








S4
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -8.92, xmax = 8.92, ymin = -5.4, ymax = 5.4; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0);
draw((-3.58,2.26)--(-3.64,-3.22)--(1.84,-3.28)--(1.9,2.2)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((-3.58,2.26)--(-3.64,-3.22), linewidth(2) + zzttqq);
draw((-3.64,-3.22)--(1.84,-3.28), linewidth(2) + zzttqq);
draw((1.84,-3.28)--(1.9,2.2), linewidth(2) + zzttqq);
draw((1.9,2.2)--(-3.58,2.26), linewidth(2) + zzttqq);
draw((-3.5946697742558436,0.9201606179663049)--(1.8594891123393478,-1.499994406339482), linewidth(2));
draw((xmin, 2.253640296517657*xmin + 0.49841400936201097)--(xmax, 2.253640296517657*xmax + 0.49841400936201097), linewidth(2)); /* line */
draw((0.760574548844643,2.2124754611440354)--(-1.6595804754611438,-3.2416834254511557), linewidth(2));
draw((xmin, -0.010948905109489145*xmin-1.47963503649635)--(xmax, -0.010948905109489145*xmax-1.47963503649635), linewidth(2)); /* line */
draw((xmin, 91.33333333333121*xmin + 148.3333333333298)--(xmax, 91.33333333333121*xmax + 148.3333333333298), linewidth(2)); /* line */
/* dots and labels */
dot((-3.58,2.26),dotstyle);
label("$A$", (-3.5,2.46), NE * labelscalefactor);
dot((-3.64,-3.22),dotstyle);
label("$B$", (-3.56,-3.02), NE * labelscalefactor);
dot((1.84,-3.28),dotstyle);
label("$C$", (1.92,-3.08), NE * labelscalefactor);
dot((1.9,2.2),dotstyle);
label("$D$", (1.98,2.4), NE * labelscalefactor);
dot((-3.5946697742558436,0.9201606179663049),dotstyle);
label("$E$", (-3.52,1.12), NE * labelscalefactor);
dot((1.8594891123393478,-1.499994406339482),dotstyle);
label("$F$", (1.94,-1.3), NE * labelscalefactor);
label("$j$", (-1,-0.58), NE * labelscalefactor);
dot((-1.6595804754611438,-3.2416834254511557),dotstyle);
label("$G$", (-1.58,-3.04), NE * labelscalefactor);
label("$k$", (1.74,4.92), NE * labelscalefactor);
dot((0.760574548844643,2.2124754611440354),linewidth(4pt) + dotstyle);
label("$H$", (0.84,2.38), NE * labelscalefactor);
label("$l$", (-0.76,-0.38), NE * labelscalefactor);
label("$m$", (-8.76,-1.22), NE * labelscalefactor);
label("$n$", (-1.42,4.92), NE * labelscalefactor);
dot((-1.5995804754611425,2.238316574548844),linewidth(4pt) + dotstyle);
label("$I$", (-1.52,2.4), NE * labelscalefactor);
dot((-3.620510887660651,-1.4399944063394812),linewidth(4pt) + dotstyle);
label("$J$", (-3.54,-1.28), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/c/8/c/c8c25eae8a34b902f4eb033642872f74f9afe087.png)
We rename the points as per the diagram.
Let


Then,




Thus the required length is

S4 by Mathzeus1024
Let the points
be located in the
plane. If
, then:
(i).
If
, then
(ii).
Finally,
.




If


Finally,

Q5
Let
be a point inside a triangle
with
. Let
and
be the images of
under reflection in
and
respectively. The distance between the circumcenters of triangles
and
is?












S5
Let
and
and
. Assume
then
and
. Observe that the circumcenter of
is just
. Observe that the circumcenter of
is just
. Thus the distance is just the circumradius or
.











Q6
Three circles of radii
and
units respectively touch each other externally in the place. The circumradius of the triangle formed by joining the centers of the circles is?


S6
Observe the triangle formed is a
right angled triangle thus the circumradius is
.


Combinatorics:
Here is a collection of combinatorics problems and solutions for new ideas:
P1
Connie finds a whiteboard that has magnet letters spelling MISSISSIPPI on it. She can rearrange the letters, in which identical letters are indistinguishable. If she uses all the letters and does not want to place any Is next to each other, how many distinct rearrangements are possible?
S1 (Gap Method)
We first arrange the M,P,S and later put the Is. Ways to arrange the M,P,S
. We have
places to choose form and
way to arrange the Is in it. Thus the final answer is
.




Q2
Carson is planning a trip for
people. Let
be the number of cars that will be used and
be the number of people per car. What is the smallest value of
such that there are exactly
possibilities for
and
so that
is an integer,
, and exactly one person is left without a car?









S2
Ofcourse
. Now
. As there are
possible values for
(and the corresponding values of
) thus the total number of factors of
is
.
can be of the form
or
. We bash to find the least is possible in the second case with
and
thus resulting the final
in being
.














Comment
Observing
was quite natural. Now the main thing is observing that
has
factors. This gives us an idea that whenever in case of product and stuff with a certain quantity given, we should check for factors and stuff.



Functional Equations:
Here are a few problems of Functional Equations:
Q1
Let
satisfy the equation
. Then :
i) Prove that
is bijective.
ii) Prove that
is multiplicative


i) Prove that

ii) Prove that

S1
Claim:
is injective.
Proof: Say
is not injective. Then
such that
.
But a function can't give two distinct values, unless
this is not true so
must be injective.
Claim:
is surjective.
Proof: Fix
, or else
.
To obtain any
just let
.
Now,



Thus
is multiplicative.

Proof: Say







Claim:

Proof: Fix





Now,





Q2
Find all functions
which satisfy for all
:


for 









S2
Note that
![\[f(x)=x^2\cdot f\left(\frac{1}{x}\right)=x^2\cdot f\left(1+\frac{1-x}{x}\right)=x^2+x^2\cdot f\left(\frac{1-x}{x}\right)=x^2+x^2\cdot \frac{(1-x)^2}{x^2}\cdot f\left(\frac{x}{1-x}\right)=\]](//latex.artofproblemsolving.com/4/d/a/4da809b44b08f413bde69c4df27874c14bc7e4b8.png)
and hence
holds for all
which easily extends to
for all
which is indeed a solution.
![\[f(x)=x^2\cdot f\left(\frac{1}{x}\right)=x^2\cdot f\left(1+\frac{1-x}{x}\right)=x^2+x^2\cdot f\left(\frac{1-x}{x}\right)=x^2+x^2\cdot \frac{(1-x)^2}{x^2}\cdot f\left(\frac{x}{1-x}\right)=\]](http://latex.artofproblemsolving.com/4/d/a/4da809b44b08f413bde69c4df27874c14bc7e4b8.png)
![\[x^2+(1-x)^2\cdot f\left(\frac{1}{1-x}-1\right)=x^2+(1-x)^2\cdot f\left(\frac{1}{1-x}\right)-(1-x)^2=x^2-(1-x)^2+f(1-x)=2x+f(-x)=2x-f(x)\]](http://latex.artofproblemsolving.com/3/d/d/3ddf8024f0a68b7279bee29f51e58e913fd1d3aa.png)




Q3
Find all functions
such that


S3
The only constant solutions are
and
.
So let us from now look only for non constant solutions.
Let
be the assertion 
Let
and so
and
since
is non constant;
and so :






and so 
implies
which gives immediately
,
and
which indeed is a solution.
implies
which gives immediately
and
and
which indeed is a solution.
implies
which gives immediately
which indeed is a solution.
Hence the five solutions :



,
and

and
and





So let us from now look only for non constant solutions.
Let


Let

































Hence the five solutions :













