Stay ahead of learning milestones! Enroll in a class over the summer!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
MOP Emails Out! (not clickbait)
Mathandski   57
N 10 minutes ago by BS2012
What an emotional roller coaster the past 34 days have been.

Congrats to all that qualified!
57 replies
+1 w
Mathandski
Yesterday at 8:25 PM
BS2012
10 minutes ago
RIP BS2012
gavinhaominwang   15
N 20 minutes ago by ethan2011
Rip BS2012, I hope you come back next year stronger and prove everyone wrong.
15 replies
gavinhaominwang
Today at 12:32 AM
ethan2011
20 minutes ago
2025 USA IMO
john0512   71
N 33 minutes ago by MathRook7817
Congratulations to all of you!!!!!!!

Alexander Wang
Hannah Fox
Karn Chutinan
Andrew Lin
Calvin Wang
Tiger Zhang

Good luck in Australia!
71 replies
+1 w
john0512
Apr 19, 2025
MathRook7817
33 minutes ago
9 USA(J)MO Grading Poll
elasticwealth   11
N 37 minutes ago by hashbrown2009
Please vote honestly. If you did not compete in the USA(J)MO, please do not vote.
11 replies
+1 w
elasticwealth
Today at 3:17 AM
hashbrown2009
37 minutes ago
Integrable function: + and - on every subinterval.
SPQ   3
N Today at 7:06 AM by solyaris
Provide a function integrable on [a, b] such that f takes on positive and negative values on every subinterval (c, d) of [a, b]. Prove your function satisfies both conditions.
3 replies
SPQ
Today at 2:40 AM
solyaris
Today at 7:06 AM
Putnam 1999 A4
djmathman   7
N Today at 7:05 AM by P162008
Sum the series \[\sum_{m=1}^\infty\sum_{n=1}^\infty\dfrac{m^2n}{3^m(n3^m+m3^n)}.\]
7 replies
djmathman
Dec 22, 2012
P162008
Today at 7:05 AM
Find the greatest possible value of the expression
BEHZOD_UZ   1
N Today at 6:34 AM by alexheinis
Source: Yandex Uzbekistan Coding and Math Contest 2025
Let $a, b, c, d$ be complex numbers with $|a| \le 1, |b| \le 1, |c| \le 1, |d| \le 1$. Find the greatest possible value of the expression $$|ac+ad+bc-bd|.$$
1 reply
BEHZOD_UZ
Yesterday at 11:56 AM
alexheinis
Today at 6:34 AM
Problem vith lcm
snowhite   2
N Today at 6:21 AM by snowhite
Prove that $\underset{n\to \infty }{\mathop{\lim }}\,\sqrt[n]{lcm(1,2,3,...,n)}=e$
Please help me! Thank you!
2 replies
snowhite
Today at 5:19 AM
snowhite
Today at 6:21 AM
combinatorics
Hello_Kitty   2
N Yesterday at 10:23 PM by Hello_Kitty
How many $100$ digit numbers are there
- not including the sequence $123$ ?
- not including the sequences $123$ and $231$ ?
2 replies
Hello_Kitty
Apr 17, 2025
Hello_Kitty
Yesterday at 10:23 PM
Sequence of functions
Squeeze   2
N Yesterday at 10:22 PM by Hello_Kitty
Q) let $f_n:[-1,1)\to\mathbb{R}$ and $f_n(x)=x^{n}$ then is this uniformly convergence on $(0,1)$ comment on uniformly convergence on $[0,1]$ where in general it is should be uniformly convergence.

My I am trying with some contradicton method like chose $\epsilon=1$ and trying to solve$|f_n(a)-f(a)|<\epsilon=1$
Next take a in (0,1) and chose a= 2^1/N but not solution
How to solve like this way help.
2 replies
Squeeze
Apr 18, 2025
Hello_Kitty
Yesterday at 10:22 PM
A in M2(prime), A=B^2 and det(B)=p^2
jasperE3   1
N Yesterday at 9:59 PM by KAME06
Source: VJIMC 2012 1.2
Determine all $2\times2$ integer matrices $A$ having the following properties:

$1.$ the entries of $A$ are (positive) prime numbers,
$2.$ there exists a $2\times2$ integer matrix $B$ such that $A=B^2$ and the determinant of $B$ is the square of a prime number.
1 reply
jasperE3
May 31, 2021
KAME06
Yesterday at 9:59 PM
Equation over a finite field
loup blanc   1
N Yesterday at 9:30 PM by alexheinis
Find the set of $x\in\mathbb{F}_{5^5}$ such that the equation in the unknown $y\in \mathbb{F}_{5^5}$:
$x^3y+y^3+x=0$ admits $3$ roots: $a,a,b$ s.t. $a\not=b$.
1 reply
loup blanc
Yesterday at 6:08 PM
alexheinis
Yesterday at 9:30 PM
Integration Bee Kaizo
Calcul8er   51
N Yesterday at 7:41 PM by BaidenMan
Hey integration fans. I decided to collate some of my favourite and most evil integrals I've written into one big integration bee problem set. I've been entering integration bees since 2017 and I've been really getting hands on with the writing side of things over the last couple of years. I hope you'll enjoy!
51 replies
Calcul8er
Mar 2, 2025
BaidenMan
Yesterday at 7:41 PM
interesting integral
Martin.s   1
N Yesterday at 2:46 PM by ysharifi
$$\int_0^\infty \frac{\sinh(t)}{t \cosh^3(t)} dt$$
1 reply
Martin.s
Monday at 3:12 PM
ysharifi
Yesterday at 2:46 PM
A lot of integer lengths: JMO #6 or USAMO Problem 4
BarbieRocks   80
N Mar 28, 2025 by Maximilian113
Let $ABC$ be a triangle with $\angle A = 90^{\circ}$. Points $D$ and $E$ lie on sides $AC$ and $AB$, respectively, such that $\angle ABD = \angle DBC$ and $\angle ACE = \angle ECB$. Segments $BD$ and $CE$ meet at $I$. Determine whether or not it is possible for segments $AB$, $AC$, $BI$, $ID$, $CI$, $IE$ to all have integer lengths.
80 replies
BarbieRocks
Apr 29, 2010
Maximilian113
Mar 28, 2025
A lot of integer lengths: JMO #6 or USAMO Problem 4
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Taco12
1757 posts
#73
Y by
Note that $\angle BIC=135^{\circ}$. Thus, $\cos \angle BIC = -\frac{\sqrt2}{2}$. LoC on $\triangle BIC$ now gives $$BI^2+CI^2-BI\cdot CI \cdot\sqrt2 = AB^2+AC^2,$$a contradiction.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
samrocksnature
8791 posts
#74
Y by
Taco12 wrote:
Note that $\angle BIC=135^{\circ}$. Thus, $\cos \angle BIC = -\frac{\sqrt2}{2}$. LoC on $\triangle BIC$ now gives $$BI^2+CI^2-BI\cdot CI \cdot\sqrt2 = AB^2+AC^2,$$a contradiction.

No bary?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Taco12
1757 posts
#75 • 2 Y
Y by samrocksnature, Danielzh
Taco12 wrote:
Note that $\angle BIC=135^{\circ}$. Thus, $\cos \angle BIC = -\frac{\sqrt2}{2}$. LoC on $\triangle BIC$ now gives $$BI^2+CI^2-BI\cdot CI \cdot\sqrt2 = AB^2+AC^2,$$a contradiction.

No bary?

Why am I doing this...

Apply barycentric coordinates on $\triangle ABC$. Note that $a=\sqrt{b^2+c^2}$, so $I=(b^2+c^2:b^3+bc^2:b^2c+c^3)$. Cevian parameterization stuff then gives $D=(b^2+c^2:0:b^2c+c^3), E=(b^2+c^2:b^3+bc^2:0)$. Distance formula now yields a contradiction.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathlover_1
295 posts
#76 • 1 Y
Y by samrocksnature
Can we solve this problem by cartesian coordinates?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Infinity_Integral
306 posts
#77
Y by
Mathlover_1 wrote:
Can we solve this problem by cartesian coordinates?

Using Cartesian Coordinates when the problem has a incentre and 2 non perpendicular angle bisectors and 4 lines involving these stuff is probably not a good idea, but the messier it gets the more likely it is to be irrational.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
trk08
614 posts
#78
Y by
We can say that $I$ must be the incenter of $\triangle{ABC}$. This means that $AI$ bisects $\angle{BAC}$, so $\angle{BAI}=45^{\circ}$. If we use LoC on $\triangle{BAI}$, we find that:
\[AI^2+AB^2-2AB\cdot AI\cos{45}=BI^2.\]
Suppose that all of these lengths are integers. As $\cos{45}=\frac{\sqrt2}{2}$, $BI^2$ is irrational so $BI$ is not integer. This is a contradiction which means that not all of these side lengths can be integers.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Infinity_Integral
306 posts
#79
Y by
The cosine rule solution is really nice, but I just set all the lengths to be integer and length bash until I get sqrt2 is rational. This is a very nice Geom question.

Full proof here
https://infinityintegral.substack.com/p/usajmo-2010-contest-review
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
huashiliao2020
1292 posts
#80
Y by
just posting my scratch work with lpieleanu, oops i dont wanna do writeup but anyways the thing in diagram is sufficient to understand
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
chakrabortyahan
380 posts
#81
Y by
Let FSOC , if possible every given length is an integer . We use the fact that $ AD= \sqrt{bc-mn}$ where $AD$ is the internal angle bisector of $\Delta ABC$(with $D \in BC$) and $BD = m;CD=n$ and $b ,c$ are as usual length of the sides $AC$ and $AB$.(This can be easily proved with help of the stuart's theorem . Then these are some of the required lengths :
$$CE = \sqrt{ab-\frac{abc^2}{(a+b)^2}}$$$$ BD = \sqrt{ac-\frac{acb^2}{(a+c)^2}}$$$$BI = \frac{a+c}{a+b+c} BD $$$$ ID = \frac{b}{a+b+c} BD$$and thus if both $BI$ and $ID$ are integers then so is $BD$.So , $\frac{b}{a+b+c}$ has to be rational and so $(a+b+c)$ has to be rational and so $a$ has to be rational and as $a^2 = b^2+c^2$ so $a$ must be an integer.
Now by the property of pythagorean triplets we write $a , b , c$ in the form $g(r^2+s^2),2grs , g(r^2-s^2)$ where $r , s $ are coprime numbers with different parity .As , $CE$ is integer so $ab(a+b+c)(a+b-c)$ has to be a perfect square dividing the thing by $g^4$ will give us another perfect squarewriting in terms of $r,s$ we get $(r^2+s^2) 8r^2s^2(r+s)^2$ is perfect square and so $(r^2+s^2)2$ is a perfect square but as we have $r^2+s^2$ odd ,hence contradiction and as $CE$ is not an integer so at least one of $CI,IE$ must be a non-integer. $\blacksquare$
This post has been edited 6 times. Last edited by chakrabortyahan, Mar 21, 2024, 12:01 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
joshualiu315
2513 posts
#82
Y by
The answer is $\boxed{\text{no}}$. Notice

\[\angle BIC = \angle BAC+ \angle ACE + \angle ABD = 135^\circ.\]
Hence,

\[AB^2+AC^2=BC^2 = BI^2+CI^2+BI \cdot CI \cdot \sqrt{2},\]
a contradiction as $\sqrt{2}$ is irrational.

[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(5cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -4.794418642903586, xmax = 12.21505354692679, ymin = -1.1719411561946844, ymax = 9.147984881366593;  /* image dimensions */

 /* draw figures */
draw((0,0)--(6,0), linewidth(1)); 
draw((6,0)--(0,8), linewidth(1)); 
draw((0,8)--(0,0), linewidth(1)); 
draw((0,8)--(2.6666666666666665,0), linewidth(1)); 
draw((6,0)--(0,3), linewidth(1)); 
 /* dots and labels */
dot((0,0),dotstyle); 
label("$A$", (0.05455029479432724,0.12280971198643523), NE * labelscalefactor); 
dot((6,0),dotstyle); 
label("$B$", (6.045946469122638,0.12280971198643523), NE * labelscalefactor); 
dot((0,8),dotstyle); 
label("$C$", (0.05455029479432724,8.132494004361794), NE * labelscalefactor); 
dot((0,3),linewidth(4pt) + dotstyle); 
label("$D$", (0.05455029479432724,3.1058141631880347), NE * labelscalefactor); 
dot((2.6666666666666665,0),linewidth(4pt) + dotstyle); 
label("$E$", (2.7202138469319235,0.09742244006131523), NE * labelscalefactor); 
dot((2,2),linewidth(4pt) + dotstyle); 
label("$I$", (2.047451140916244,2.1030169221457946), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
megahertz13
3182 posts
#83
Y by
Video Solution in 3 minutes!

Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
megahertz13
3182 posts
#84
Y by
The answer is no.

Note that $$\angle{BIC}=90^\circ+\frac{\angle{A}}{2}=135^\circ.$$Law of Cosines on $\triangle{BIC}$ gives $$BI^2+CI^2+\sqrt{2}\cdot BI\cdot CI=BC^2=AB^2+AC^2\implies \sqrt{2}=\frac{AB^2+AC^2-BI^2+CI^2}{BI\cdot CI}.$$If all of these segments have integer length, the left-hand side would be irrational, while the right-hand side is rational. Therefore, it is impossible for all of these segments to have integer length.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
gladIasked
648 posts
#85
Y by
dumb ahh solution:

The answer is no.

Assume for the sake of contradiction that there exists $\triangle ABC$ such that each of the given segments has integer length. First, note that $\angle IBC + \angle ICB=45^\circ$, so $\angle BIC = \angle DIE = 135^\circ$. Therefore, $\angle BIE = \angle CID = 45^\circ$. Now, $\triangle DIC\sim \triangle IAC$ and $\triangle BIE\sim \triangle BAI$ by AA similarity. We are then able to derive the following equalities:
\begin{align*}
    \frac{BE}{BI}=\frac{BI}{AB}=\frac{EI}{AI}\\
    \frac{CD}{CI}=\frac{DI}{AI}=\frac{CI}{AC}.
\end{align*}Thus, $BE=\frac{BI^2}{AB}$, so $BE$ is rational. Analogously, $CD$, $AE$, and $AD$ are also rational. Also, $AI =\frac{EI\cdot BI}{BE}$, so $AI$ is rational. By the Angle Bisector Theorem, $\frac{BC}{CA}= \frac{BE}{AE}\implies BC=CA\cdot \frac{BE}{AE}$, so $BC$ is also rational. To finish, note that $[ABC] = \frac{bc}2$, so by $A=rs$ we have the inradius $r=\frac{bc}{a+b+c}$ is rational. However, $AI = r\sqrt 2 = \frac{bc}{a+b+c}\cdot \sqrt 2$, which is irrational, a contradiction. Therefore, no such triangle with the given conditions exists. $\blacksquare$
This post has been edited 2 times. Last edited by gladIasked, Nov 28, 2024, 9:45 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jupiterballs
42 posts
#86
Y by
We claim that the answer is no,
We prove our claim by contradiction,

Assume that $AB,AC,IC,IB$ $\in$ $\mathbb{Z}$

Now Let $\angle ABC$ = $2\theta$

Then, $\angle DBC$ = $\theta$

And as $\angle ACB$ = $90^\circ- 2 \theta$

$\angle ECB$ = $45^\circ- \theta$

So, $\angle BIC$ = $180^\circ$ - $\angle ACB$ - $\angle ECB$ = $135^\circ$

Now, by cosine law, we get that

$IB^2 + IC^2-\sqrt{2}\cdot IB\cdot IC$ = $AB^2 + AC^2$

Which implies that if all $AB,AC,IC,IB$ $\in$ $\mathbb{Z}$, then $\sqrt{2} \in \mathbb{Z}$, which is absurd.
$\mathbb{QED}$
$\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maximilian113
550 posts
#87
Y by
Bro, I didn't see the Cosine Law and instead I did Sine Law howw :wallbash_red:

Let $x=AB, y=AC.$ It is well-known that $\angle BIC = 90^\circ + \frac12 \angle A = 135^\circ.$ Therefore by the Sine Law and Half Angle formula $$IB = \sqrt{2} BC \sin \frac{\angle C}{2} = \sqrt{\sqrt{x^2+y^2}(\sqrt{x^2+y^2}-AC)}.$$Therefore if $\sqrt{x^2+y^2} \notin \mathbb Z,$ we have the square root of an integer minus an irrational, which clearly cannot be an integer.

Hence $AB, AC, BC$ are integers. Let $z=BC.$ Then for positive integers $m, n, k$ with $m > n,$ WLOG $x=2mn, y=m^2-n^2, z=m^2+n^2.$ Then $$\sqrt{z^2-xz}, \sqrt{z^2-yz} \in \mathbb Z.$$The first one yields $\sqrt{(m^2+n^2)(m-n)^2} \in \mathbb Z \implies \sqrt{m^2+n^2} \in \mathbb Z,$ but the second one gives $$\sqrt{(m^2+n^2)(2n^2)} \in \mathbb Z \implies \sqrt{2n^2} \in \mathbb Z,$$a contradiction. Hence the answer is no.
Z K Y
N Quick Reply
G
H
=
a