We have your learning goals covered with Spring and Summer courses available. Enroll today!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
VERY HARD MATH PROBLEM!
slimshadyyy.3.60   7
N 28 minutes ago by ThresherShark_
Let a ≥b ≥c ≥0 be real numbers such that a^2 +b^2 +c^2 +abc = 4. Prove that
a+b+c+(√a−√c)^2 ≥3.
7 replies
slimshadyyy.3.60
Yesterday at 10:49 PM
ThresherShark_
28 minutes ago
The Tetrahedral Space Partition
jannatiar   1
N 28 minutes ago by alinazarboland
Source: 2025 AlborzMO Day 2 P3
Is it possible to partition three-dimensional space into tetrahedra (not necessarily regular) such that there exists a plane that intersects the edges of each tetrahedron at exactly 4 or 0 points?

Proposed by Arvin Taheri
1 reply
jannatiar
Mar 9, 2025
alinazarboland
28 minutes ago
gcd(a,b) x lcm(b,c), gcd(b,c)x lcm(c,a), ,gcd(c,a) x lcm(a,b)
parmenides51   3
N 32 minutes ago by Nari_Tom
Source: 2024 Czech and Slovak Olympiad III A p1
Let $a, b, c$ be positive integers such that one of the values $$gcd(a,b) \cdot  lcm(b,c), \,\,\,\, gcd(b,c)\cdot  lcm(c,a), \,\,\,\, gcd(c,a)-\cdot lcm(a,b)$$is equal to the product of the remaining two. Prove that one of the numbers $a, b, c$ is a multiple of another of them.
3 replies
parmenides51
May 18, 2024
Nari_Tom
32 minutes ago
Escape from the room
jannatiar   1
N 33 minutes ago by alinazarboland
Source: 2024 AlborzMO P3
A person is locked in a room with a password-protected computer. If they enter the correct password, the door opens and they are freed. However, the password changes every time it is entered incorrectly. The person knows that the password is always a 10-digit number, and they also know that the password change follows a fixed pattern. This means that if the current password is \( b \) and \( a \) is entered, the new password is \( c \), which is determined by \( b \) and \( a \) (naturally, the person does not know \( c \) or \( b \)). Prove that regardless of the characteristics of this computer, the prisoner can free themselves.

Proposed by Reza Tahernejad Karizi
1 reply
jannatiar
Mar 4, 2025
alinazarboland
33 minutes ago
A number theory about divisors which no one fully solved at the contest
nAalniaOMliO   23
N 39 minutes ago by AL1296
Source: Belarusian national olympiad 2024
Let's call a pair of positive integers $(k,n)$ interesting if $n$ is composite and for every divisor $d<n$ of $n$ at least one of $d-k$ and $d+k$ is also a divisor of $n$
Find the number of interesting pairs $(k,n)$ with $k \leq 100$
M. Karpuk
23 replies
nAalniaOMliO
Jul 24, 2024
AL1296
39 minutes ago
Thanks u!
Ruji2018252   0
an hour ago
Let $x,y,z,t\in\mathbb{R}$ and $\begin{cases}x^2+y^2=4\\z^2+t^2=9\\xt+yz\geqslant 6\end{cases}$.
$1,$ Prove $xz=yt$
$2,$ Find maximum $P=x+z$
0 replies
Ruji2018252
an hour ago
0 replies
a^{2m}+a^{n}+1 is perfect square
kmh1   2
N an hour ago by cuden
Source: own
Find all positive integer triplets $(a,m,n)$ such that $2m>n$ and $a^{2m}+a^{n}+1$ is a perfect square.
2 replies
kmh1
Mar 20, 2025
cuden
an hour ago
IMO 2016 Problem 1
quangminhltv99   150
N an hour ago by ehuseyinyigit
Source: IMO 2016
Triangle $BCF$ has a right angle at $B$. Let $A$ be the point on line $CF$ such that $FA=FB$ and $F$ lies between $A$ and $C$. Point $D$ is chosen so that $DA=DC$ and $AC$ is the bisector of $\angle{DAB}$. Point $E$ is chosen so that $EA=ED$ and $AD$ is the bisector of $\angle{EAC}$. Let $M$ be the midpoint of $CF$. Let $X$ be the point such that $AMXE$ is a parallelogram. Prove that $BD,FX$ and $ME$ are concurrent.
150 replies
quangminhltv99
Jul 11, 2016
ehuseyinyigit
an hour ago
OA=OB if <PAD = <ADP=< CBP =< PCB =< CPD
parmenides51   2
N an hour ago by Nari_Tom
Source: 2024 Czech and Slovak Olympiad III A p2
Let the interior point $P$ of the convex quadrilateral $ABCD$ be such that $$|\angle PAD| = |\angle ADP| = |\angle CBP| = |\angle PCB| = |\angle CPD|.$$Let $O$ be the center of the circumcircle of the triangle $CPD$. Prove that $|OA| = |OB|$.
2 replies
parmenides51
May 18, 2024
Nari_Tom
an hour ago
usamOOK geometry
KevinYang2.71   92
N an hour ago by Bardia7003
Source: USAMO 2025/4, USAJMO 2025/5
Let $H$ be the orthocenter of acute triangle $ABC$, let $F$ be the foot of the altitude from $C$ to $AB$, and let $P$ be the reflection of $H$ across $BC$. Suppose that the circumcircle of triangle $AFP$ intersects line $BC$ at two distinct points $X$ and $Y$. Prove that $C$ is the midpoint of $XY$.
92 replies
KevinYang2.71
Mar 21, 2025
Bardia7003
an hour ago
did U silly this?
r00tsOfUnity   31
N an hour ago by Mathgloggers
Source: 2023 AIME I #10
There exists a unique positive integer $a$ for which the sum \[U=\sum_{n=1}^{2023}\left\lfloor\dfrac{n^{2}-na}{5}\right\rfloor\]is an integer strictly between $-1000$ and $1000$. For that unique $a$, find $a+U$.

(Note that $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $x$.)
31 replies
r00tsOfUnity
Feb 8, 2023
Mathgloggers
an hour ago
Classic Inequality
KHOMNYO2   2
N an hour ago by GreekIdiot
Given positive real numbers $x,y,z$ such that $x^2 + y^2 + z^2 = 3$. Prove the following holds

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + 2x + 2y + 2z \geq 9$$
2 replies
KHOMNYO2
Mar 28, 2025
GreekIdiot
an hour ago
one nice!
MihaiT   0
4 hours ago
Given $m_1$ weights, each weighing $k_1$ and another $m_2$ weights with $k_2$ each. Write a algorithm that determines the ways in which a scale can be balanced with a weight $X$ on the left pan, and display the number of possible solutions. (The weights can be placed on both pans and the program starts with the numbers $m_1,k_1,m_2,k_2,X$. What will be displayed after three successive runs: 5,2,5,1,4 | 5,2,5,1,11 | 5,2,5,1,20?

One answer is possible:
a)10;5;0;
b)20;7;0;
c)20;7;1;
d)10;10;0;
e)10;7;0;
f)20;5;0,
0 replies
MihaiT
4 hours ago
0 replies
Practice AMC 10A
freddyfazbear   59
N Today at 5:27 AM by Andrew2019
Practice AMC 10A

1. Find the sum of the infinite geometric series 1 + 7/18 + 49/324 + …
A - 36/11, B - 9/22, C - 18/11, D - 18/7, E - 9/14

2. What is the first digit after the decimal point in the square root of 420?
A - 1, B - 2, C - 3, D - 4, E - 5

3. Caden’s calculator is broken and two of the digits are swapped for some reason. When he entered in 9 + 10, he got 21. What is the sum of the two digits that got swapped?
A - 2, B - 3, C - 4, D - 5, E - 6

4. Two circles with radiuses 47 and 96 intersect at two points A and B. Let P be the point 82% of the way from A to B. A line is drawn through P that intersects both circles twice. Let the four intersection points, from left to right be W, X, Y, and Z. Find (PW/PX)*(PY/PZ).
A - 50/5863, B - 47/96, C - 1, D - 96/47, E - 5863/50

5. Two dice are rolled, and the two numbers shown are a and b. How many possible values of ab are there?
A - 17, B - 18, C - 19, D - 20, E - 21

6. What is the largest positive integer that cannot be expressed in the form 6a + 9b + 4 + 20d, where a, b, and d are positive integers?
A - 29, B - 38, C - 43, D - 76, E - 82

7. What is the absolute difference of the probabilities of getting at least 6/10 on a 10-question true or false test and at least 3/5 on a 5-question true or false test?
A - 63/1024, B - 63/512, C - 63/256, D - 63/128, E - 0

8. How many arrangements of the letters in the word “sensor” are there such that the two vowels have an even number of letters (remember 0 is even) between them (including the original “sensor”)?
A - 72, B - 108, C - 144, D - 216, E - 432

9. Find the value of 0.9 * 0.97 + 0.5 * 0.1 * (0.5 * 0.97 + 0.5 * 0.2) rounded to the nearest tenth of a percent.
A - 89.9%, B - 90.0%, C - 90.1%, D - 90.2%, E - 90.3%

10. Two painters are painting a room. Painter 1 takes 52:36 to paint the room, and painter 2 takes 26:18 to paint the room. With these two painters working together, how long should the job take?
A - 9:16, B - 10:52, C - 17:32, D - 35:02, E - 39:44

11. Suppose that on the coordinate grid, the x-axis represents climate, and the y-axis represents landscape, where -1 <= x, y <= 1 and a higher number for either coordinate represents better conditions along that particular axis. Accordingly, the points (0, 0), (1, 1), (-1, 1), (-1, -1), and (1, -1) represent cities, plains, desert, snowy lands, and mountains, respectively. An area is classified as whichever point it is closest to. Suppose a theoretical new area is selected by picking a random point within the square bounded by plains, desert, snowy lands, and mountains as its vertices. What is the probability that it is a plains?
A - 1 - (1/4)pi, B - 1/5, C - (1/16)pi, D - 1/4, E - 1/8

12. Statistics show that people who work out n days a week have a (1/10)(n+2) chance of getting a 6-pack, and the number of people who exercise n days a week is directly proportional to 8 - n (Note that n can only be an integer from 0 to 7, inclusive). A random person is selected. Find the probability that they have a 6-pack.
A - 13/30, B - 17/30, C - 19/30, D - 23/30, E - 29/30

13. A factory must produce 3,000 items today. The manager of the factory initially calls over 25 employees, each producing 5 items per hour starting at 9 AM. However, he needs all of the items to be produced by 9 PM, and realizes that he must speed up the process. At 12 PM, the manager then encourages his employees to work faster by increasing their pay, in which they then all speed up to 6 items per hour. At 1 PM, the manager calls in 15 more employees which make 5 items per hour each. Unfortunately, at 3 PM, the AC stops working and the hot sun starts taking its toll, which slows every employee down by 2 items per hour. At 4 PM, the technician fixes the AC, and all employees return to producing 5 items per hour. At 5 PM, the manager calls in 30 more employees, which again make 5 items per hour. At 6 PM, he calls in 30 more employees. At 7 PM, he rewards all the pickers again, speeding them up to 6 items per hour. But at 8 PM, n employees suddenly crash out and stop working due to fatigue, and the rest all slow back down to 5 items per hour because they are tired. The manager does not have any more employees, so if too many of them drop out, he is screwed and will have to go overtime. Find the maximum value of n such that all of the items can still be produced on time, done no later than 9 PM.
A - 51, B - 52, C - 53, D - 54, E - 55

14. Find the number of positive integers n less than 69 such that the average of all the squares from 1^2 to n^2, inclusive, is an integer.
A - 11, B - 12, C - 23, D - 24, E - 48

15. Find the number of ordered pairs (a, b) of integers such that (a - b)^2 = 625 - 2ab.
A - 6, B - 10, C - 12, D - 16, E - 20

16. What is the 420th digit after the decimal point in the decimal expansion of 1/13?
A - 4, B - 5, C - 6, D - 7, E - 8

17. Two congruent right rectangular prisms stand near each other. Both have the same orientation and altitude. A plane that cuts both prisms into two pieces passes through the vertical axes of symmetry of both prisms and does not cross the bottom or top faces of either prism. Let the point that the plane crosses the axis of symmetry of the first prism be A, and the point that the plane crosses the axis of symmetry of the second prism be B. A is 81% of the way from the bottom face to the top face of the first prism, and B is 69% of the way from the bottom face to the top face of the second prism. What percent of the total volume of both prisms combined is above the plane?
A - 19%, B - 25%, C - 50%, D - 75%, E - 81%

18. What is the greatest number of positive integer factors an integer from 1 to 100 can have?
A - 10, B - 12, C - 14, D - 15, E - 16

19. On an analog clock, the minute hand makes one full revolution every hour, and the hour hand makes one full revolution every 12 hours. Both hands move at a constant rate. During which of the following time periods does the minute hand pass the hour hand?
A - 7:35 - 7:36, B - 7:36 - 7:37, C - 7:37 - 7:38, D - 7:38 - 7:39, E - 7:39 - 7:40

20. Find the smallest positive integer that is a leg in three different Pythagorean triples.
A - 12, B - 14, C - 15, D - 20, E - 21

21. How many axes of symmetry does the graph of (x^2)(y^2) = 69 have?
A - 2, B - 3, C - 4, D - 5, E - 6

22. Real numbers a, b, and c are chosen uniformly and at random from 0 to 3. Find the probability that a + b + c is less than 2.
A - 4/81, B - 8/81, C - 4/27, D - 8/27, E - 2/3

23. Let f(n) be the sum of the positive integer divisors of n. Find the sum of the digits of the smallest odd positive integer n such that f(n) is greater than 2n.
A - 15, B - 18, C - 21, D - 24, E - 27

24. Find the last three digits of 24^10.
A - 376, B - 576, C - 626, D - 876, E - 926

25. A basketball has a diameter of 9 inches, and the hoop has a diameter of 18 inches. Peter decides to pick up the basketball and make a throw. Given that Peter has a 1/4 chance of accidentally hitting the backboard and missing the shot, but if he doesn’t, he is guaranteed that the frontmost point of the basketball will be within 18 inches of the center of the hoop at the moment when a great circle of the basketball crosses the plane containing the rim. No part of the ball will extend behind the backboard at any point during the throw, and the rim is attached directly to the backboard. What is the probability that Peter makes the shot?
A - 3/128, B - 3/64, C - 3/32, D - 3/16, E - 3/8
59 replies
freddyfazbear
Mar 24, 2025
Andrew2019
Today at 5:27 AM
What should I do
Jaxman8   2
N Mar 26, 2025 by Aaronjudgeisgoat
I recently mocked 2 AMC 10’s, and 2 AIME’s. My scores for the AMC 10 were both 123 and my AIME scores were 8 and 9 for 2010 I and II. What should I study for 2025-2026 AMCs? Goal is JMO.
2 replies
Jaxman8
Mar 26, 2025
Aaronjudgeisgoat
Mar 26, 2025
What should I do
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jaxman8
98 posts
#1
Y by
I recently mocked 2 AMC 10’s, and 2 AIME’s. My scores for the AMC 10 were both 123 and my AIME scores were 8 and 9 for 2010 I and II. What should I study for 2025-2026 AMCs? Goal is JMO.
This post has been edited 1 time. Last edited by Jaxman8, Mar 26, 2025, 5:12 AM
Reason: Typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
neeyakkid23
104 posts
#2 • 5 Y
Y by megarnie, Aaron_Q, Alex-131, Tem8, ehuseyinyigit
Great job, this Is what my friends who have jumped have done:
1. Practice college comps, provide many selected problems
2. Grind aops mocks, you'll see a lot within 2 to 3 months of AMC season
3. Grind aime, which also helps on speed for AMC even though you think it may not
Again this is what my friends who have jmoed have done, you are free to not trust me though
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Aaronjudgeisgoat
856 posts
#3 • 1 Y
Y by happypi31415
Hi, I think I might be one of said friends :D

Note that 2010 will be probably moderately easier than the 2026 AIME's.

One thing I suggest you do before grinding problems is to at least know all the concepts needed to be able to solve anything up to p11. You don't need to be able to apply these theorems/ concepts, just know what they are first and remember them.
From there, grind grind grind. You can do this by grinding a bunch of aime problems, (maybe use mathdash.com/stats/aime), as well as college comps of similar difficulty. This helps with AIME, and doing mid level AIME problems definitely helps with late AMC problems, and makes you faster in my opinion. Also, take a lot of mocks. For every week or month you put in, trying to get one extra AMC or AIME question correct, just one silly at the wrong time can take that away. The best way to avoid this is to frequently put yourself in test conditions and aim not to make a single silly. From there, analyze each mock to see what went well, and what didn't, for both AMC's and AIME's.
This is just what I did to go from a 112.5/5 to a 127.5/11. It may work for you, it may not. But if you think it's a good idea, try it out fr
Z K Y
N Quick Reply
G
H
=
a