Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Japanese high school Olympiad.
parkjungmin   1
N 18 minutes ago by GreekIdiot
It's about the Japanese high school Olympiad.

If there are any students who are good at math, try solving it.
1 reply
parkjungmin
Yesterday at 5:25 AM
GreekIdiot
18 minutes ago
ISI UGB 2025 P3
SomeonecoolLovesMaths   12
N 29 minutes ago by mqoi_KOLA
Source: ISI UGB 2025 P3
Suppose $f : [0,1] \longrightarrow \mathbb{R}$ is differentiable with $f(0) = 0$. If $|f'(x) | \leq f(x)$ for all $x \in [0,1]$, then show that $f(x) = 0$ for all $x$.
12 replies
SomeonecoolLovesMaths
Yesterday at 11:32 AM
mqoi_KOLA
29 minutes ago
Integration Bee Kaizo
Calcul8er   62
N an hour ago by Svyatoslav
Hey integration fans. I decided to collate some of my favourite and most evil integrals I've written into one big integration bee problem set. I've been entering integration bees since 2017 and I've been really getting hands on with the writing side of things over the last couple of years. I hope you'll enjoy!
62 replies
Calcul8er
Mar 2, 2025
Svyatoslav
an hour ago
Already posted in HSO, too difficult
GreekIdiot   0
an hour ago
Source: own
Find all integer triplets that satisfy the equation $5^x-2^y=z^3$.
0 replies
GreekIdiot
an hour ago
0 replies
No more topics!
fractional binomial limit sum
Levieee   3
N Apr 20, 2025 by Levieee
this was given to me by a friend

$\lim_{n \to \infty} \sum_{k=1}^{n}{\frac{1}{\binom{n}{k}}}$

a nice solution using sandwich is
$\frac{1}{n}   + \frac{1}{n} + 1 + \frac{n-3}{\binom{n}{2}} \ge \frac{1}{n} +  \sum_{k=2}^{n-2}{\frac{1}{\binom{n}{k}}}+ \frac{1}{n} + 1 \ge \frac{1}{n} +  + \frac{1}{n} + 1$

therefore $\lim_{n \to \infty} \sum_{k=1}^{n}{\frac{1}{\binom{n}{k}}}$ = $1$

ALSO ANOTHER SOLUTION WHICH I WAS THINKING OF WITHOUT SANDWICH BUT I CANT COMPLETE WAS TO USE THE GAMMA FUNCTION

we know

$B(x, y) = \int_0^1 t^{x - 1} (1 - t)^{y - 1} \, dt$

$B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}$

and $\Gamma(n) = (n-1)!$ for integers,

$\frac{1}{\binom{n}{k}}$ = $\frac{k! (n-k)!}{n!}$

therefore from the gamma function we get

$ (n+1) \int_{0}^{1}  x^k (1-x)^{n-k} dx$ = $\frac{1}{\binom{n}{k}}$ = $\frac{k! (n-k)!}{n!}$
$\Rightarrow$ $\lim_{n \to \infty} (n+1) \int_{0}^{1} \sum_{k=1}^{n} x^k (1-x)^{n-k} dx$ $=\lim_{n \to \infty} \sum_{k=1}^{n}{\frac{1}{\binom{n}{k}}}$

somehow im supposed to show that

$\lim_{n \to \infty} (n+1) \int_{0}^{1} \sum_{k=1}^{n} x^k (1-x)^{n-k} dx$ $= 1$

all i could observe was if we do L'hopital (which i hate to do as much as you do)

i get $\frac{ \int_{0}^{1} \sum_{k=1}^{n} x^k (1-x)^{n-k} dx}{1/n+1}$

now since $x \in (0,1)$ , as $n \to \infty$ the $(1-x)^{n-k} \to 0$ which gets us the $\frac{0}{0}$ form therefore L'hopital came to my mind , which might be a completely wrong intuition, anyway what should i do to find that limit

:noo: :pilot:
3 replies
Levieee
Apr 19, 2025
Levieee
Apr 20, 2025
fractional binomial limit sum
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Levieee
237 posts
#1
Y by
this was given to me by a friend

$\lim_{n \to \infty} \sum_{k=1}^{n}{\frac{1}{\binom{n}{k}}}$

a nice solution using sandwich is
$\frac{1}{n}   + \frac{1}{n} + 1 + \frac{n-3}{\binom{n}{2}} \ge \frac{1}{n} +  \sum_{k=2}^{n-2}{\frac{1}{\binom{n}{k}}}+ \frac{1}{n} + 1 \ge \frac{1}{n} +  + \frac{1}{n} + 1$

therefore $\lim_{n \to \infty} \sum_{k=1}^{n}{\frac{1}{\binom{n}{k}}}$ = $1$

ALSO ANOTHER SOLUTION WHICH I WAS THINKING OF WITHOUT SANDWICH BUT I CANT COMPLETE WAS TO USE THE GAMMA FUNCTION

we know

$B(x, y) = \int_0^1 t^{x - 1} (1 - t)^{y - 1} \, dt$

$B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}$

and $\Gamma(n) = (n-1)!$ for integers,

$\frac{1}{\binom{n}{k}}$ = $\frac{k! (n-k)!}{n!}$

therefore from the gamma function we get

$ (n+1) \int_{0}^{1}  x^k (1-x)^{n-k} dx$ = $\frac{1}{\binom{n}{k}}$ = $\frac{k! (n-k)!}{n!}$
$\Rightarrow$ $\lim_{n \to \infty} (n+1) \int_{0}^{1} \sum_{k=1}^{n} x^k (1-x)^{n-k} dx$ $=\lim_{n \to \infty} \sum_{k=1}^{n}{\frac{1}{\binom{n}{k}}}$

somehow im supposed to show that

$\lim_{n \to \infty} (n+1) \int_{0}^{1} \sum_{k=1}^{n} x^k (1-x)^{n-k} dx$ $= 1$

all i could observe was if we do L'hopital (which i hate to do as much as you do)

i get $\frac{ \int_{0}^{1} \sum_{k=1}^{n} x^k (1-x)^{n-k} dx}{1/n+1}$

now since $x \in (0,1)$ , as $n \to \infty$ the $(1-x)^{n-k} \to 0$ which gets us the $\frac{0}{0}$ form therefore L'hopital came to my mind , which might be a completely wrong intuition, anyway what should i do to find that limit

:noo: :pilot:
This post has been edited 3 times. Last edited by Levieee, Apr 20, 2025, 10:14 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KAME06
159 posts
#2
Y by
Check Putnam 1958 B1, you might find something useful there :D
This post has been edited 1 time. Last edited by KAME06, Apr 19, 2025, 11:51 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anudeep
199 posts
#3
Y by
btw the limit must be at least $2$ (and turns out it is precisely $2$) as the first and the last term are both $1$ i.e, $1/\binom{n}{0}+1/\binom{n}{n}=2$.
This post has been edited 1 time. Last edited by anudeep, Apr 20, 2025, 7:52 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Levieee
237 posts
#4
Y by
anudeep wrote:
btw the limit must be at least $2$ (and turns out it is precisely $2$) as the first and the last term are both $1$ i.e, $1/\binom{n}{0}+1/\binom{n}{n}=2$.

oh my bad edited the question
Z K Y
N Quick Reply
G
H
=
a