Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
Draw sqrt(2024)
shanelin-sigma   1
N an hour ago by CrazyInMath
Source: 2024/12/24 TCFMSG Mock p10
On a big plane, two points with length $1$ are given. Prove that one can only use straightedge (which draws a straight line passing two drawn points) and compass (which draws a circle with a chosen radius equal to the distance of two drawn points and centered at a drawn points) to construct a line and two points on it with length $\sqrt{2024}$ in only $10$ steps (Namely, the total number of circles and straight lines drawn is at most $10$.)
1 reply
shanelin-sigma
Dec 24, 2024
CrazyInMath
an hour ago
A beautiful Lemoine point problem
phonghatemath   3
N an hour ago by orengo42
Source: my teacher
Given triangle $ABC$ inscribed in a circle with center $O$. $P$ is any point not on (O). $AP, BP, CP$ intersect $(O)$ at $A', B', C'$. Let $L, L'$ be the Lemoine points of triangle $ABC, A'B'C'$ respectively. Prove that $P, L, L'$ are collinear.
3 replies
phonghatemath
Today at 5:01 AM
orengo42
an hour ago
Serbian selection contest for the IMO 2025 - P1
OgnjenTesic   4
N an hour ago by Mathgloggers
Source: Serbian selection contest for the IMO 2025
Let \( p \geq 7 \) be a prime number and \( m \in \mathbb{N} \). Prove that
\[\left| p^m - (p - 2)! \right| > p^2.\]Proposed by Miloš Milićev
4 replies
OgnjenTesic
May 22, 2025
Mathgloggers
an hour ago
k colorings and triangles
Rijul saini   2
N 2 hours ago by kotmhn
Source: LMAO Revenge 2025 Day 1 Problem 3
In the city of Timbuktu, there is an orphanage. It shelters children from the new mysterious disease that causes children to explode. There are m children in the orphanage. To try to cure this disease, a mad scientist named Myla has come up with an innovative cure. She ties every child to every other child using medicinal ropes. Every child is connected to every other child using one of $k$ different ropes. She then performs a experiment that causes $3$ children, each connected to each other with the same type of rope, to be cured. Two experiments are said to be of the same type, if each of the ropes connecting the children has the same medicine imbued in it. She then unties them and lets them go back home.

We let $f(n, k)$ be the minimum m such that Myla can perform at least $n$ experiments of the same type. Prove that:

$i.$ For every $k \in \mathbb N$ there exists a $N_k \in N$ and $a_k, b_k \in \mathbb Z$ such that for all $n > N_k$, \[f(n, k) = a_kn + b_k.\]
$ii.$ Find the value of $a_k$ for every $k \in \mathbb N$.
2 replies
Rijul saini
Wednesday at 7:11 PM
kotmhn
2 hours ago
IMO ShortList 2008, Number Theory problem 1
April   65
N 2 hours ago by Siddharthmaybe
Source: IMO ShortList 2008, Number Theory problem 1
Let $n$ be a positive integer and let $p$ be a prime number. Prove that if $a$, $b$, $c$ are integers (not necessarily positive) satisfying the equations \[ a^n + pb = b^n + pc = c^n + pa\] then $a = b = c$.

Proposed by Angelo Di Pasquale, Australia
65 replies
April
Jul 9, 2009
Siddharthmaybe
2 hours ago
Aloo and Batata play game on N-gon
guptaamitu1   0
2 hours ago
Source: LMAO revenge 2025 P6
Aloo and Batata are playing a game. They are given a regular $n$-gon, where $n > 2$ is an even integer. At the start, a line joining two vertices is chosen arbitrarily and one of its endpoints is chosen as its pivot. Now, Aloo rotates the line around the pivot either clockwise or anti-clockwise until it passes through another vertex of the $n$-gon. Then, the new vertex becomes the pivot and Batata again chooses to rotate the line clockwise or anti-clockwise
about the pivot. The player who moves the line into a position it has already been in (i.e. it passes through the same two vertices of the $n$-gon it was in at a previous time) loses.
Find all $n$ such that Batata always has a winning strategy irrespective of the starting edge.

Proposed by Anik Sardar, Om Patil and Anudip Giri
0 replies
guptaamitu1
2 hours ago
0 replies
Trig Inequality back in Olympiads!
guptaamitu1   0
2 hours ago
Source: LMAO revenge 2025 P5
Let $x,y,z \in \mathbb R$ be such that $x + y + z = \frac{\pi}{2}$ and $0 < x,y,z \le \frac{\pi}{4}$. Prove that:
$$  \left( \frac{\sin x - \sin y}{\cos z} \right)^2  \le 1 - 8 \sin x \sin y \sin z $$
Proposed by Shreyas Deshpande
0 replies
guptaamitu1
2 hours ago
0 replies
Reflection of (BHC) in AH
guptaamitu1   0
2 hours ago
Source: LMAO revenge 2025 P4
Let $ABC$ be a triangle with orthocentre $H$. Let $D,E,F$ be the foot of altitudes of $A,B,C$ onto the opposite sides, respectively. Consider $\omega$, the reflection of $\odot(BHC)$ about line $AH$. Let line $EF$ cut $\omega$ at distinct points $X,Y$, and let $H'$ be the orthocenter of $\triangle AYD$. Prove that points $A,H',X,D$ are concyclic.

Proposed by Mandar Kasulkar
0 replies
guptaamitu1
2 hours ago
0 replies
King's Constrained Walk
Hellowings   2
N 2 hours ago by Hellowings
Source: Own
Given an n x n chessboard, with a king starting at any square, the king's task is to visit each square in the board exactly once (essentially an open path); this king moves how a king in chess would.
However, we are allowed to place k numbers on the board of any value such that for each number A we placed on the board, the king must be in the position of that number A on its Ath square in its journey, with the starting square as its 1st square.
Suppose after we placed k numbers, there is one and only one way to complete the king's task (this includes placing the king in a starting square), find the minimum value of k set by n.

Should've put one of its tag as "Open problem"; I have no idea how to tackle this problem either.
2 replies
Hellowings
May 30, 2025
Hellowings
2 hours ago
Nut equation
giangtruong13   2
N 3 hours ago by Mathzeus1024
Source: Mie black fiends
Solve the quadratic equation: $$[4(\sqrt{(1+x)^3})^2-3\sqrt{1+x^2}](4x^3+3x)=2$$
2 replies
giangtruong13
Apr 1, 2025
Mathzeus1024
3 hours ago
Japanese Olympiad
parkjungmin   9
N Today at 1:47 AM by Gauler
It's about the Japanese Olympiad

I can't solve it no matter how much I think about it.

If there are people who are good at math

Please help me.
9 replies
parkjungmin
May 10, 2025
Gauler
Today at 1:47 AM
a