Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
IMC 1994 D1 P5
j___d   5
N Today at 5:39 PM by krigger
a) Let $f\in C[0,b]$, $g\in C(\mathbb R)$ and let $g$ be periodic with period $b$. Prove that $\int_0^b f(x) g(nx)\,\mathrm dx$ has a limit as $n\to\infty$ and
$$\lim_{n\to\infty}\int_0^b f(x)g(nx)\,\mathrm dx=\frac 1b \int_0^b f(x)\,\mathrm dx\cdot\int_0^b g(x)\,\mathrm dx$$
b) Find
$$\lim_{n\to\infty}\int_0^\pi \frac{\sin x}{1+3\cos^2nx}\,\mathrm dx$$
5 replies
j___d
Mar 6, 2017
krigger
Today at 5:39 PM
2023 Putnam A2
giginori   21
N Today at 3:32 PM by pie854
Let $n$ be an even positive integer. Let $p$ be a monic, real polynomial of degree $2 n$; that is to say, $p(x)=$ $x^{2 n}+a_{2 n-1} x^{2 n-1}+\cdots+a_1 x+a_0$ for some real coefficients $a_0, \ldots, a_{2 n-1}$. Suppose that $p(1 / k)=k^2$ for all integers $k$ such that $1 \leq|k| \leq n$. Find all other real numbers $x$ for which $p(1 / x)=x^2$.
21 replies
giginori
Dec 3, 2023
pie854
Today at 3:32 PM
Putnam 2019 A1
awesomemathlete   33
N Today at 3:25 PM by cursed_tangent1434
Source: 2019 William Lowell Putnam Competition
Determine all possible values of $A^3+B^3+C^3-3ABC$ where $A$, $B$, and $C$ are nonnegative integers.
33 replies
awesomemathlete
Dec 10, 2019
cursed_tangent1434
Today at 3:25 PM
IMC 1994 D1 P2
j___d   5
N Today at 3:11 PM by krigger
Let $f\in C^1(a,b)$, $\lim_{x\to a^+}f(x)=\infty$, $\lim_{x\to b^-}f(x)=-\infty$ and $f'(x)+f^2(x)\geq -1$ for $x\in (a,b)$. Prove that $b-a\geq\pi$ and give an example where $b-a=\pi$.
5 replies
j___d
Mar 6, 2017
krigger
Today at 3:11 PM
A Construction in Multivariable Analysis
MrOrange   0
Today at 2:11 PM
Source: Garling's A COURSE IN MATHEMATICAL ANALYSIS
Construct a continuous real valued function \( f \) on \( \mathbb{R}^2 \) for which
\[
\lim_{R \to \infty} \int_{\|x\|_2 \leq R} f(x) \, dx = 0
\]and for which
\[
\lim_{R \to \infty} \int_{\|x\|_\infty \leq R} f(x) \, dx \text{ does not exist.}
\]
0 replies
MrOrange
Today at 2:11 PM
0 replies
Possible values of determinant of 0-1 matrices
mathematics2004   4
N Today at 1:56 PM by loup blanc
Source: 2021 Simon Marais, A3
Let $\mathcal{M}$ be the set of all $2021 \times 2021$ matrices with at most two entries in each row equal to $1$ and all other entries equal to $0$.
Determine the size of the set $\{ \det A : A \in M \}$.
Here $\det A$ denotes the determinant of the matrix $A$.
4 replies
mathematics2004
Nov 2, 2021
loup blanc
Today at 1:56 PM
ISI UGB 2025
Entrepreneur   1
N Today at 1:49 PM by Knight2E4
Source: ISI UGB 2025
1.)
Suppose $f:\mathbb R\to\mathbb R$ is differentiable and $|f'(x)|<\frac 12\;\forall\;x\in\mathbb R.$ Show that for some $x_0\in\mathbb R,f(x_0)=x_0.$

3.)
Suppose $f:[0,1]\to\mathbb R$ is differentiable with $f(0)=0.$ If $|f'(x)|\le f(x)\;\forall\;x\in[0,1],$ then show that $f(x)=0\;\forall\;x.$

4.)
Let $S^1=\{z\in\mathbb C:|z|=1\}$ be the unit circle in the complex plane. Let $f:S^1\to S^1$ be the map given by $f(z)=z^2.$ We define $f^{(1)}:=f$ and $f^{(k+1)}=f\circ f^{(k)}$ for $k\ge 1.$ The smallest positive integer $n$ such that $f^n(z)=z$ is called period of $z.$ Determine the total number of points $S^1$ of period $2025.$

6.)
Let $\mathbb N$ denote the set of natural numbers, and let $(a_i,b_i), 1\le i\le 9,$ be nine distinct tuples in $\mathbb N\times\mathbb N.$ Show that there are $3$ distinct elements in the set $\{2^{a_i}3^{b_i}:1\le i\le 9\}$ whose product is a perfect cube.

8.)
Let $n\ge 2$ and let $a_1\le a_2\le\cdots\le a_n$ be positive integers such that $$\sum_{i=1}^n a_i=\prod_{i=1}^n a_i.$$Prove that $$\sum_{i=1}^n a_i\le 2n$$and determine when equality holds.
1 reply
Entrepreneur
May 27, 2025
Knight2E4
Today at 1:49 PM
Recurrence trouble
SomeonecoolLovesMaths   3
N Today at 1:44 PM by Knight2E4
Let $0 < x_0 < y_0$ be real numbers. Define $x_{n+1} = \frac{x_n + y_n}{2}$ and $y_{n+1} = \sqrt{x_{n+1}y_n}$.
Prove that $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$ and hence find the limit.
3 replies
SomeonecoolLovesMaths
May 28, 2025
Knight2E4
Today at 1:44 PM
Trigo or Complex no.?
hzbrl   5
N Today at 9:20 AM by GreenKeeper
(a) Let $y=\cos \phi+\cos 2 \phi$, where $\phi=\frac{2 \pi}{5}$. Verify by direct substitution that $y$ satisfies the quadratic equation $2 y^2=3 y+2$ and deduce that the value of $y$ is $-\frac{1}{2}$.
(b) Let $\theta=\frac{2 \pi}{17}$. Show that $\sum_{k=0}^{16} \cos k \theta=0$
(c) If $z=\cos \theta+\cos 2 \theta+\cos 4 \theta+\cos 8 \theta$, show that the value of $z$ is $-(1-\sqrt{17}) / 4$.



I could solve (a) and (b). Can anyone help me with the 3rd part please?
5 replies
hzbrl
May 27, 2025
GreenKeeper
Today at 9:20 AM
2023 Putnam A1
giginori   29
N Yesterday at 10:52 PM by kidsbian
For a positive integer $n$, let $f_n(x)=\cos (x) \cos (2 x) \cos (3 x) \cdots \cos (n x)$. Find the smallest $n$ such that $\left|f_n^{\prime \prime}(0)\right|>2023$.
29 replies
giginori
Dec 3, 2023
kidsbian
Yesterday at 10:52 PM
a