Happy Memorial Day! Please note that AoPS Online is closed May 24-26th.

G
Topic
First Poster
Last Poster
number theory diophantic with factorials and primes
skellyrah   4
N 37 minutes ago by skellyrah
Source: by me
find all triplets of non negative integers (a,b,p) where p is prime such that $$ a! + b! + 7ab = p^2 $$
4 replies
skellyrah
Feb 16, 2025
skellyrah
37 minutes ago
Inequality em981
oldbeginner   17
N an hour ago by sqing
Source: Own
Let $a, b, c>0, a+b+c=3$. Prove that
\[\sqrt{a+\frac{9}{b+2c}}+\sqrt{b+\frac{9}{c+2a}}+\sqrt{c+\frac{9}{a+2b}}+\frac{2(ab+bc+ca)}{9}\ge\frac{20}{3}\]
17 replies
oldbeginner
Sep 22, 2016
sqing
an hour ago
primes,exponentials,factorials
skellyrah   6
N an hour ago by skellyrah
find all primes p,q such that $$ \frac{p^q+q^p-p-q}{p!-q!} $$is a prime number
6 replies
skellyrah
Apr 30, 2025
skellyrah
an hour ago
Serbian selection contest for the IMO 2025 - P5
OgnjenTesic   2
N an hour ago by GreenTea2593
Source: Serbian selection contest for the IMO 2025
Determine the smallest positive real number $\alpha$ such that there exists a sequence of positive real numbers $(a_n)$, $n \in \mathbb{N}$, with the property that for every $n \in \mathbb{N}$ it holds that:
\[
        a_1 + \cdots + a_{n+1} < \alpha \cdot a_n.
    \]Proposed by Pavle Martinović
2 replies
OgnjenTesic
May 22, 2025
GreenTea2593
an hour ago
centroid wanted, point that minimizes sum of squares of distances from sides
parmenides51   1
N an hour ago by SuperBarsh
Source: Oliforum Contest V 2017 p9 https://artofproblemsolving.com/community/c2487525_oliforum_contes
Given a triangle $ABC$, let $ P$ be the point which minimizes the sum of squares of distances from the sides of the triangle. Let $D, E, F$ the projections of $ P$ on the sides of the triangle $ABC$. Show that $P$ is the barycenter of $DEF$.

(Jack D’Aurizio)
1 reply
parmenides51
Sep 29, 2021
SuperBarsh
an hour ago
Strictly monotone polynomial with an extra condition
Popescu   11
N an hour ago by Iveela
Source: IMSC 2024 Day 2 Problem 2
Let $\mathbb{R}_{>0}$ be the set of all positive real numbers. Find all strictly monotone (increasing or decreasing) functions $f:\mathbb{R}_{>0} \to \mathbb{R}$ such that there exists a two-variable polynomial $P(x, y)$ with real coefficients satisfying
$$
f(xy)=P(f(x), f(y))
$$for all $x, y\in\mathbb{R}_{>0}$.

Proposed by Navid Safaei, Iran
11 replies
Popescu
Jun 29, 2024
Iveela
an hour ago
Hard geometry
Lukariman   1
N an hour ago by ricarlos
Given triangle ABC, any line d intersects AB at D, intersects AC at E, intersects BC at F. Let O1,O2,O3 be the centers of the circles circumscribing triangles ADE, BDF, CFE. Prove that the orthocenter of triangle O1O2O3 lies on line d.
1 reply
Lukariman
May 12, 2025
ricarlos
an hour ago
Russian Diophantine Equation
LeYohan   1
N 2 hours ago by Natrium
Source: Moscow, 1963
Find all integer solutions to

$\frac{xy}{z} + \frac{xz}{y} + \frac{yz}{x} = 3$.
1 reply
LeYohan
Yesterday at 2:59 PM
Natrium
2 hours ago
Simple Geometry
AbdulWaheed   6
N 2 hours ago by Gggvds1
Source: EGMO
Try to avoid Directed angles
Let ABC be an acute triangle inscribed in circle $\Omega$. Let $X$ be the midpoint of the arc $\overarc{BC}$ not containing $A$ and define $Y, Z$ similarly. Show that the orthocenter of $XYZ$ is the incenter $I$ of $ABC$.
6 replies
AbdulWaheed
May 23, 2025
Gggvds1
2 hours ago
Bosnia and Herzegovina JBMO TST 2013 Problem 4
gobathegreat   4
N 2 hours ago by FishkoBiH
Source: Bosnia and Herzegovina Junior Balkan Mathematical Olympiad TST 2013
It is given polygon with $2013$ sides $A_{1}A_{2}...A_{2013}$. His vertices are marked with numbers such that sum of numbers marked by any $9$ consecutive vertices is constant and its value is $300$. If we know that $A_{13}$ is marked with $13$ and $A_{20}$ is marked with $20$, determine with which number is marked $A_{2013}$
4 replies
gobathegreat
Sep 16, 2018
FishkoBiH
2 hours ago
a