Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
Multiple of power of two.
dgrozev   4
N 2 hours ago by Assassino9931
Source: Bulgarian TST, 2020, p2
Given two odd natural numbers $ a,b$ prove that for each $ n\in\mathbb{N}$ there exists $ m\in\mathbb{N}$ such that either $ a^mb^2-1$ or $ b^ma^2-1$ is multiple of $ 2^n.$
4 replies
dgrozev
Aug 4, 2020
Assassino9931
2 hours ago
Parallelity and equal angles given, wanted an angle equality
BarisKoyuncu   6
N 2 hours ago by expsaggaf
Source: 2022 Turkey JBMO TST P4
Given a convex quadrilateral $ABCD$ such that $m(\widehat{ABC})=m(\widehat{BCD})$. The lines $AD$ and $BC$ intersect at a point $P$ and the line passing through $P$ which is parallel to $AB$, intersects $BD$ at $T$. Prove that
$$m(\widehat{ACB})=m(\widehat{PCT})$$
6 replies
BarisKoyuncu
Mar 15, 2022
expsaggaf
2 hours ago
2020 IGO Intermediate P3
turko.arias   13
N 2 hours ago by fe.
Source: 7th Iranian Geometry Olympiad (Intermediate) P3
In acute-angled triangle $ABC$ ($AC > AB$), point $H$ is the orthocenter and point $M$ is the midpoint of the segment $BC$. The median $AM$ intersects the circumcircle of triangle $ABC$ at $X$. The line $CH$ intersects the perpendicular bisector of $BC$ at $E$ and the circumcircle of the triangle $ABC$ again at $F$. Point $J$ lies on circle $\omega$, passing through $X, E,$ and $F$, such that $BCHJ$ is a trapezoid ($CB \parallel HJ$). Prove that $JB$ and $EM$ meet on $\omega$.


Proposed by Alireza Dadgarnia
13 replies
turko.arias
Nov 4, 2020
fe.
2 hours ago
Functional equation involving decimal-place count
saulgodman   0
2 hours ago
Source: Own

Let
\[
S = \left\{\, x \in \mathbb{Q} : x \text{ has a finite decimal expansion} \,\right\}.
\]For each \( x \in S \), define
\[
d(x) = \text{the number of digits after the decimal point in the (reduced) decimal form of } x.
\]Find all functions \( f\colon S \to \mathbb{Z} \) such that, whenever both \( x+y \in S \) and \( x y \in S \),
\[
f(x) + f(y) = f(x+y) + d(x y).
\]
0 replies
saulgodman
2 hours ago
0 replies
Did you talk to Noga Alon?
pohoatza   36
N 2 hours ago by ezpotd
Source: IMO Shortlist 2006, Combinatorics 3, AIMO 2007, TST 6, P2
Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 - x)^{b(P)}} = 1,\] where the sum is taken over all convex polygons with vertices in $ S$.

Alternative formulation:

Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A -$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A -$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial
\[ P_A(x) = x^{|A|}(1 - x)^{r(A)}.
\]
Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) = 1.$

Proposed by Federico Ardila, Colombia
36 replies
pohoatza
Jun 28, 2007
ezpotd
2 hours ago
sqrt(n) or n+p (Generalized 2017 IMO/1)
vincentwant   2
N 2 hours ago by vincentwant
Let $p$ be an odd prime. Define $f(n)$ over the positive integers as follows:
$$f(n)=\begin{cases}
\sqrt{n}&\text{ if n is a perfect square} \\
n+p&\text{ otherwise}
\end{cases}$$
Let $p$ be chosen such that there exists an ordered pair of positive integers $(n,k)$ where $n>1,p\nmid n$ such that $f^k(n)=n$. Prove that there exists at least three integers $i$ such that $1\leq i\leq k$ and $f^i(n)$ is a perfect square.
2 replies
vincentwant
Apr 30, 2025
vincentwant
2 hours ago
Aslı tries to make the amount of stones at every unit square is equal
AlperenINAN   1
N 2 hours ago by expsaggaf
Source: Turkey JBMO TST 2025 P2
Let $n$ be a positive integer. Aslı and Zehra are playing a game on an $n\times n$ grid. Initially, $10n^2$ stones are placed on some of the unit squares of this grid.

On each move (starting with Aslı), Aslı chooses a row or a column that contains at least two squares with different numbers of stones, and Zehra redistributes the stones in that row or column so that after redistribution, the difference in the number of stones between any two squares in that row or column is at most one. Furthermore, this move must change the number of stones in at least one square.

For which values of $n$, regardless of the initial placement of the stones, can Aslı guarantee that every square ends up with the same number of stones?
1 reply
AlperenINAN
May 11, 2025
expsaggaf
2 hours ago
Arrange positive divisors of n in rectangular table!
cjquines0   44
N 2 hours ago by ezpotd
Source: 2016 IMO Shortlist C2
Find all positive integers $n$ for which all positive divisors of $n$ can be put into the cells of a rectangular table under the following constraints:
[list]
[*]each cell contains a distinct divisor;
[*]the sums of all rows are equal; and
[*]the sums of all columns are equal.
[/list]
44 replies
cjquines0
Jul 19, 2017
ezpotd
2 hours ago
Problem 1: Triangle triviality
ZetaX   135
N 3 hours ago by mathnerd_101
Source: IMO 2006, 1. day
Let $ABC$ be triangle with incenter $I$. A point $P$ in the interior of the triangle satisfies \[\angle PBA+\angle PCA = \angle PBC+\angle PCB.\] Show that $AP \geq AI$, and that equality holds if and only if $P=I$.
135 replies
ZetaX
Jul 12, 2006
mathnerd_101
3 hours ago
Swapping string consisting a,b,c
MarkBcc168   45
N 3 hours ago by ezpotd
Source: IMO Shortlist 2017 C2
Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.
45 replies
MarkBcc168
Jul 10, 2018
ezpotd
3 hours ago
a