College Math
Topics in undergraduate and graduate studies
Topics in undergraduate and graduate studies
3
M
G
BBookmark
VNew Topic
kLocked
College Math
Topics in undergraduate and graduate studies
Topics in undergraduate and graduate studies
3
M
G
BBookmark
VNew Topic
kLocked
No tags match your search
Msuperior algebra
calculus
real analysis
linear algebra
superior algebra
complex analysis
advanced fields
probability and stats
number theory
topology
Putnam
college contests
articles
function
integration
calculus computations
real analysis unsolved
limit
algebra
trigonometry
matrix
logarithms
derivative
superior algebra unsolved
polynomial
abstract algebra
geometry
inequalities
vector
group theory
linear algebra unsolved
probability
advanced fields unsolved
analytic geometry
domain
induction
LaTeX
Ring Theory
3D geometry
complex analysis unsolved
complex numbers
Functional Analysis
geometric transformation
superior algebra solved
real analysis theorems
search
parameterization
quadratics
real analysis solved
limits
ratio
No tags match your search
MG
Topic
First Poster
Last Poster
What functions check these conditions?
TheBlackPuzzle913 2
N
Saturday at 10:02 PM
by Filipjack
Source: RMO shortlist, Mihai Bunget and Dragoș Gabriel Borugă
Find all functions
that are twice differentiable and satisfy


2 replies
Show the existence of a neighborhhod
Alidq 0
Mar 28, 2025
Source: some derivative problem handout
Let
a twice differentiable function with a continuous second derivative, for which there exists a unique
such that
. If
, show that there exists a neighborhood
of
such that for any
, the sequence defined by the recurrence relation
converges to
.









0 replies
f"(x)>0, show that int(f(x)cosx dx) >0
Sayan 11
N
Mar 28, 2025
by Mathzeus1024
Source: ISI(BS) 2009 #2
Let
be a continuous function, whose first and second derivatives are continuous on
and
for all
in
. Show that

![$[0,2\pi]$](http://latex.artofproblemsolving.com/1/6/6/166f2f81461a7a6ce563dbb02f64f78f6bd08acc.png)


![$[0,2\pi]$](http://latex.artofproblemsolving.com/1/6/6/166f2f81461a7a6ce563dbb02f64f78f6bd08acc.png)
![\[\int_{0}^{2\pi} f(x)\cos x dx \geq 0\]](http://latex.artofproblemsolving.com/d/e/a/dea20971d99aa4120cd34c5817c179da5e642b43.png)
11 replies
Double derivative coated integral
RenheMiResembleRice 1
N
Mar 28, 2025
by HacheB2031
Source: Lufang Yue, Lianru Meng
Show that J>0. For this to be true, I guess we also need the condition for c and d to be positive, isn't that right?
1 reply
prove that there exists \xi
Peter 21
N
Mar 25, 2025
by Alphaamss
Source: IMC 1998 day 1 problem 4
The function
is twice differentiable and satisfies
.
Prove that there is a
for which we have
.


Prove that there is a
![$\xi \in ]0,1[$](http://latex.artofproblemsolving.com/f/a/c/fac71dc4df50908a85c3133787a84ccb2ae3d79b.png)

21 replies
Derivative of function R^2 to R^2
Sifan.C.Maths 1
N
Mar 22, 2025
by alexheinis
Source: Internet
Give a function
. Calculate the first and second derivative of the function at the point
.


1 reply
Derivative of Normalization Map has null space of dimension 1
myth17 4
N
Mar 21, 2025
by myth17
Let
be defined on
. Show that the dimension of the kernel of
for any
is
.





4 replies
Cycle length of (x^2-1)/2x derivative relation power of two crazy
ehz2701 2
N
Mar 1, 2025
by rchokler
Let
[center]
[/center]
(this is the approximation using Newton’s method for
. Consider the sequence given by
. Suppose for some
, we have the relationship
, where
for
(in other words, a cycle of length
). Show that
[center]
, [/center]
where
denotes
function compositions of
(i.e.
,
.)
—————
For example, when
, it produces a cycle of length
, and
[center]

(this is the approximation using Newton’s method for







[center]

where





—————
For example, when



2 replies
Differentiable function
kido2006 1
N
Feb 18, 2025
by alexheinis
Let
be a twice differentiable function satisfying:
Prove that there exists
such that 
![$ f:\left [ 0,+\infty \right ] \rightarrow \mathbb{R}$](http://latex.artofproblemsolving.com/5/b/7/5b70e424d4f40dacd6e70370fafb1a2cf2f519ba.png)



1 reply
