Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Proving a group is abelian
dragosgamer12   2
N 4 hours ago by RobertRogo
Source: Radu Diaconu, Gazeta Matematica seria B Nr.2/2025
Let $(G,\cdot)$ be a group, $K$ a subgroup of $G$ and $f : G \rightarrow G$ an endomorphism with the following property:
There exists a nonempty set $H\subset	G$ such that for any $k \in G \setminus K$ there exist $h  \in H$ with $f(h)=k$ and $z \cdot h= h \cdot z$, for any $z \in H$.

a)Prove that $(G, \cdot)$ is abelian.
b)If, additionally, $H$ is a subgroup of $G$, prove that $H=G$
2 replies
dragosgamer12
Yesterday at 10:06 PM
RobertRogo
4 hours ago
Minimum number of points
Ecrin_eren   2
N Yesterday at 8:32 PM by Shan3t
There are 18 teams in a football league. Each team plays against every other team twice in a season—once at home and once away. A win gives 3 points, a draw gives 1 point, and a loss gives 0 points. One team became the champion by earning more points than every other team. What is the minimum number of points this team could have?

2 replies
Ecrin_eren
Yesterday at 4:09 PM
Shan3t
Yesterday at 8:32 PM
|A/pA|<=p, finite index=> isomorphism - OIMU 2008 Problem 7
Jorge Miranda   2
N Yesterday at 8:00 PM by pi_quadrat_sechstel
Let $A$ be an abelian additive group such that all nonzero elements have infinite order and for each prime number $p$ we have the inequality $|A/pA|\leq p$, where $pA = \{pa |a \in A\}$, $pa = a+a+\cdots+a$ (where the sum has $p$ summands) and $|A/pA|$ is the order of the quotient group $A/pA$ (the index of the subgroup $pA$).

Prove that each subgroup of $A$ of finite index is isomorphic to $A$.
2 replies
Jorge Miranda
Aug 28, 2010
pi_quadrat_sechstel
Yesterday at 8:00 PM
Weird locus problem
Sedro   7
N Yesterday at 8:00 PM by ReticulatedPython
Points $A$ and $B$ are in the coordinate plane such that $AB=2$. Let $\mathcal{H}$ denote the locus of all points $P$ in the coordinate plane satisfying $PA\cdot PB=2$, and let $M$ be the midpoint of $AB$. Points $X$ and $Y$ are on $\mathcal{H}$ such that $\angle XMY = 45^\circ$ and $MX\cdot MY=\sqrt{2}$. The value of $MX^4 + MY^4$ can be expressed in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
7 replies
Sedro
May 11, 2025
ReticulatedPython
Yesterday at 8:00 PM
2024 Mock AIME 1 ** p15 (cheaters' trap) - 128 | n^{\sigma (n)} - \sigma(n^n)
parmenides51   3
N Yesterday at 6:17 PM by Sedro
Let $N$ be the number of positive integers $n$ such that $n$ divides $2024^{2024}$ and $128$ divides
$$n^{\sigma (n)} - \sigma(n^n)$$where $\sigma (n)$ denotes the number of positive integers that divide $n$, including $1$ and $n$. Find the remainder when $N$ is divided by $1000$.
3 replies
parmenides51
Jan 29, 2025
Sedro
Yesterday at 6:17 PM
IOQM P23 2024
SomeonecoolLovesMaths   3
N Yesterday at 4:53 PM by lakshya2009
Consider the fourteen numbers, $1^4,2^4,...,14^4$. The smallest natural numebr $n$ such that they leave distinct remainders when divided by $n$ is:
3 replies
SomeonecoolLovesMaths
Sep 8, 2024
lakshya2009
Yesterday at 4:53 PM
Inequalities
sqing   2
N Yesterday at 4:05 PM by MITDragon
Let $ 0\leq x,y,z\leq 2. $ Prove that
$$-48\leq (x-yz)( 3y-zx)(z-xy)\leq 9$$$$-144\leq (3x-yz)(y-zx)(3z-xy)\leq\frac{81}{64}$$$$-144\leq (3x-yz)(2y-zx)(3z-xy)\leq\frac{81}{16}$$
2 replies
sqing
May 9, 2025
MITDragon
Yesterday at 4:05 PM
Pells equation
Entrepreneur   0
Yesterday at 3:56 PM
A Pells Equation is defined as follows $$x^2-1=ky^2.$$Where $x,y$ are positive integers and $k$ is a non-square positive integer. If $(x_n,y_n)$ denotes the n-th set of solution to the equation with $(x_0,y_0)=(1,0).$ Then, prove that $$x_{n+1}x_n-ky_{n+1}y_n=x_1,$$$$x_n\pm y_n\sqrt k=(x_1\pm y_1\sqrt k)^n.$$
0 replies
Entrepreneur
Yesterday at 3:56 PM
0 replies
Incircle concurrency
niwobin   1
N Yesterday at 2:42 PM by niwobin
Triangle ABC with incenter I, incircle is tangent to BC, AC, and AB at D, E and F respectively.
DT is a diameter for the incircle, and AT meets the incircle again at point H.
Let DH and EF intersect at point J. Prove: AJ//BC.
1 reply
niwobin
May 11, 2025
niwobin
Yesterday at 2:42 PM
Inequalities
sqing   3
N Yesterday at 2:29 PM by rachelcassano
Let $ a,b,c>0 $ . Prove that
$$\frac{a+5b}{b+c}+\frac{b+5c}{c+a}+\frac{c+5a}{a+b}\geq 9$$$$ \frac{2a+11b}{b+c}+\frac{2b+11c}{c+a}+\frac{2c+11a}{a+b}\geq \frac{39}{2}$$$$ \frac{25a+147b}{b+c}+\frac{25b+147c}{c+a}+\frac{25c+147a}{a+b} \geq258$$
3 replies
sqing
May 14, 2025
rachelcassano
Yesterday at 2:29 PM
The centroid of ABC lies on ME [2023 Abel, Problem 1b]
Amir Hossein   3
N Yesterday at 1:45 PM by Captainscrubz
In the triangle $ABC$, points $D$ and $E$ lie on the side $BC$, with $CE = BD$. Also, $M$ is the midpoint of $AD$. Show that the centroid of $ABC$ lies on $ME$.
3 replies
Amir Hossein
Mar 12, 2024
Captainscrubz
Yesterday at 1:45 PM
2021 SMT Guts Round 5 p17-20 - Stanford Math Tournament
parmenides51   5
N Yesterday at 8:00 AM by MATHS_ENTUSIAST
p17. Let the roots of the polynomial $f(x) = 3x^3 + 2x^2 + x + 8 = 0$ be $p, q$, and $r$. What is the sum $\frac{1}{p} +\frac{1}{q} +\frac{1}{r}$ ?


p18. Two students are playing a game. They take a deck of five cards numbered $1$ through $5$, shuffle them, and then place them in a stack facedown, turning over the top card next to the stack. They then take turns either drawing the card at the top of the stack into their hand, showing the drawn card to the other player, or drawing the card that is faceup, replacing it with the card on the top of the pile. This is repeated until all cards are drawn, and the player with the largest sum for their cards wins. What is the probability that the player who goes second wins, assuming optimal play?


p19. Compute the sum of all primes $p$ such that $2^p + p^2$ is also prime.


p20. In how many ways can one color the $8$ vertices of an octagon each red, black, and white, such that no two adjacent sides are the same color?


PS. You should use hide for answers. Collected here.
5 replies
parmenides51
Feb 11, 2022
MATHS_ENTUSIAST
Yesterday at 8:00 AM
a