Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
Brilliant Problem
M11100111001Y1R   7
N 2 hours ago by flower417477
Source: Iran TST 2025 Test 3 Problem 3
Find all sequences \( (a_n) \) of natural numbers such that for every pair of natural numbers \( r \) and \( s \), the following inequality holds:
\[
\frac{1}{2} < \frac{\gcd(a_r, a_s)}{\gcd(r, s)} < 2
\]
7 replies
M11100111001Y1R
May 27, 2025
flower417477
2 hours ago
In Cyclic Quadrilateral ABCD, find AB^2+BC^2-CD^2-AD^2
Darealzolt   1
N 2 hours ago by Beelzebub
Source: KTOM April 2025 P8
Given Cyclic Quadrilateral \(ABCD\) with an area of \(2025\), with \(\angle ABC = 45^{\circ}\). If \( 2AC^2 = AB^2+BC^2+CD^2+DA^2\), Hence find the value of \(AB^2+BC^2-CD^2-DA^2\).
1 reply
Darealzolt
Today at 4:10 AM
Beelzebub
2 hours ago
Another FE
M11100111001Y1R   3
N 2 hours ago by AndreiVila
Source: Iran TST 2025 Test 2 Problem 3
Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for all $x,y>0$ we have:
$$f(f(f(xy))+x^2)=f(y)(f(x)-f(x+y))$$
3 replies
M11100111001Y1R
Yesterday at 8:03 AM
AndreiVila
2 hours ago
Iran TST Starter
M11100111001Y1R   4
N 2 hours ago by flower417477
Source: Iran TST 2025 Test 1 Problem 1
Let \( a_n \) be a sequence of positive real numbers such that for every \( n > 2025 \), we have:
\[
a_n = \max_{1 \leq i \leq 2025} a_{n-i} - \min_{1 \leq i \leq 2025} a_{n-i}
\]Prove that there exists a natural number \( M \) such that for all \( n > M \), the following holds:
\[
a_n < \frac{1}{1404}
\]
4 replies
M11100111001Y1R
May 27, 2025
flower417477
2 hours ago
Inequality with abc=1
tenplusten   10
N 2 hours ago by Adywastaken
Source: JBMO 2011 Shortlist A7
$\boxed{\text{A7}}$ Let $a,b,c$ be positive reals such that $abc=1$.Prove the inequality $\sum\frac{2a^2+\frac{1}{a}}{b+\frac{1}{a}+1}\geq 3$
10 replies
tenplusten
May 15, 2016
Adywastaken
2 hours ago
A game of cutting
k.vasilev   11
N 2 hours ago by NicoN9
Source: All-Russian Olympiad 2019 grade 10 problem 2
Pasha and Vova play the following game, making moves in turn; Pasha moves first. Initially, they have a large piece of plasticine. By a move, Pasha cuts one of the existing pieces into three(of arbitrary sizes), and Vova merges two existing pieces into one. Pasha wins if at some point there appear to be $100$ pieces of equal weights. Can Vova prevent Pasha's win?
11 replies
k.vasilev
Apr 23, 2019
NicoN9
2 hours ago
Problem 10
SlovEcience   1
N 3 hours ago by lbh_qys
Let \( x, y, z \) be positive real numbers satisfying
\[ xy + yz + zx = 3xyz. \]Prove that
\[
\sqrt{\frac{x}{3y^2z^2 + xyz}} + \sqrt{\frac{y}{3x^2z^2 + xyz}} + \sqrt{\frac{z}{3x^2y^2 + xyz}} \le \frac{3}{2}.
\]
1 reply
SlovEcience
3 hours ago
lbh_qys
3 hours ago
Cup of Combinatorics
M11100111001Y1R   8
N 3 hours ago by sansgankrsngupta
Source: Iran TST 2025 Test 4 Problem 2
There are \( n \) cups labeled \( 1, 2, \dots, n \), where the \( i \)-th cup has capacity \( i \) liters. In total, there are \( n \) liters of water distributed among these cups such that each cup contains an integer amount of water. In each step, we may transfer water from one cup to another. The process continues until either the source cup becomes empty or the destination cup becomes full.

$a)$ Prove that from any configuration where each cup contains an integer amount of water, it is possible to reach a configuration in which each cup contains exactly 1 liter of water in at most \( \frac{4n}{3} \) steps.

$b)$ Prove that in at most \( \frac{5n}{3} \) steps, one can go from any configuration with integer water amounts to any other configuration with the same property.
8 replies
M11100111001Y1R
May 27, 2025
sansgankrsngupta
3 hours ago
2-var inequality
sqing   2
N 3 hours ago by sqing
Source: Own
Let $ a,b> 0 , ab(a+b+1) =3.$ Prove that$$\frac{1}{a^2}+\frac{1}{b^2}+\frac{24}{(a+b)^2} \geq 8$$$$ \frac{a}{b^2}+\frac{b}{a^2}+\frac{49}{(a+  b)^2} \geq \frac{57}{4}$$Let $ a,b> 0 ,  (a+b)(ab+1) =4.$ Prove that$$\frac{1}{a^2}+\frac{1}{b^2}+\frac{40}{(a+b)^2} \geq 12$$$$\frac{a}{b^2}+\frac{b}{a^2}+\frac{76}{(a+ b)^2}  \geq 21$$
2 replies
sqing
May 25, 2025
sqing
3 hours ago
2-var inequality
sqing   10
N 3 hours ago by sqing
Source: Own
Let $ a,b>0 , a^2+b^2-ab\leq 1 . $ Prove that
$$a^3+b^3 -\frac{a^4}{b+1}  -\frac{b^4}{a+1} \leq 1 $$
10 replies
sqing
May 27, 2025
sqing
3 hours ago
a