We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
VERY HARD MATH PROBLEM!
slimshadyyy.3.60   14
N 7 minutes ago by GreekIdiot
Let a ≥b ≥c ≥0 be real numbers such that a^2 +b^2 +c^2 +abc = 4. Prove that
a+b+c+(√a−√c)^2 ≥3.
14 replies
slimshadyyy.3.60
Yesterday at 10:49 PM
GreekIdiot
7 minutes ago
Intersection of a cevian with the incircle
djb86   24
N 10 minutes ago by Ilikeminecraft
Source: South African MO 2005 Q4
The inscribed circle of triangle $ABC$ touches the sides $BC$, $CA$ and $AB$ at $D$, $E$ and $F$ respectively. Let $Q$ denote the other point of intersection of $AD$ and the inscribed circle. Prove that $EQ$ extended passes through the midpoint of $AF$ if and only if $AC = BC$.
24 replies
djb86
May 27, 2012
Ilikeminecraft
10 minutes ago
Polynomials and their shift with all real roots and in common
Assassino9931   2
N 17 minutes ago by AshAuktober
Source: Bulgaria Spring Mathematical Competition 2025 11.4
We call two non-constant polynomials friendly if each of them has only real roots, and every root of one polynomial is also a root of the other. For two friendly polynomials \( P(x), Q(x) \) and a constant \( C \in \mathbb{R}, C \neq 0 \), it is given that \( P(x) + C \) and \( Q(x) + C \) are also friendly polynomials. Prove that \( P(x) \equiv Q(x) \).
2 replies
Assassino9931
4 hours ago
AshAuktober
17 minutes ago
Impossible to search, classic graph problem
AshAuktober   0
20 minutes ago
Source: Classic
Prove that any graph $G=(V,E)$ with $|V|=|E|-1$ has at least two cycles in it.
0 replies
AshAuktober
20 minutes ago
0 replies
Functional equation
Dadgarnia   11
N 21 minutes ago by jasperE3
Source: Iranian TST 2018, second exam day 1, problem 1
Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ that satisfy the following conditions:
a. $x+f(y+f(x))=y+f(x+f(y)) \quad \forall x,y \in \mathbb{R}$
b. The set $I=\left\{\frac{f(x)-f(y)}{x-y}\mid x,y\in \mathbb{R},x\neq y \right\}$ is an interval.

Proposed by Navid Safaei
11 replies
Dadgarnia
Apr 15, 2018
jasperE3
21 minutes ago
Geo challenge on finding simple ways to solve it
Assassino9931   2
N 23 minutes ago by Assassino9931
Source: Bulgaria Spring Mathematical Competition 2025 9.2
Let $ABC$ be an acute scalene triangle inscribed in a circle \( \Gamma \). The angle bisector of \( \angle BAC \) intersects \( BC \) at \( L \) and \( \Gamma \) at \( S \). The point \( M \) is the midpoint of \( AL \). Let \( AD \) be the altitude in \( \triangle ABC \), and the circumcircle of \( \triangle DSL \) intersects \( \Gamma \) again at \( P \). Let \( N \) be the midpoint of \( BC \), and let \( K \) be the reflection of \( D \) with respect to \( N \). Prove that the triangles \( \triangle MPS \) and \( \triangle ADK \) are similar.
2 replies
Assassino9931
5 hours ago
Assassino9931
23 minutes ago
Easy problem
Hip1zzzil   2
N 24 minutes ago by aidan0626
$(C,M,S)$ is a pair of real numbers such that

$2C+M+S-2C^{2}-2CM-2MS-2SC=0$
$C+2M+S-3M^{2}-3CM-3MS-3SC=0$
$C+M+2S-4S^{2}-4CM-4MS-4SC=0$

Find $2C+3M+4S$.
2 replies
Hip1zzzil
4 hours ago
aidan0626
24 minutes ago
Train yourself on folklore NT FE ideas
Assassino9931   2
N 36 minutes ago by bo18
Source: Bulgaria Spring Mathematical Competition 2025 9.4
Determine all functions $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that $f(a) + 2ab + 2f(b)$ divides $f(a)^2 + 4f(b)^2$ for any positive integers $a$ and $b$.
2 replies
1 viewing
Assassino9931
5 hours ago
bo18
36 minutes ago
When is this well known sequence periodic?
Assassino9931   2
N 42 minutes ago by Assassino9931
Source: Bulgaria Spring Mathematical Competition 2025 12.2
Determine all values of $a_0$ for which the sequence of real numbers with $a_{n+1}=3a_n - 4a_n^3$ for all $n\geq 0$ is periodic from the beginning.
2 replies
Assassino9931
4 hours ago
Assassino9931
42 minutes ago
Concurrence of angle bisectors
proglote   65
N an hour ago by smbellanki
Source: Brazil MO #5
Let $ABC$ be an acute triangle and $H$ is orthocenter. Let $D$ be the intersection of $BH$ and $AC$ and $E$ be the intersection of $CH$ and $AB$. The circumcircle of $ADE$ cuts the circumcircle of $ABC$ at $F \neq A$. Prove that the angle bisectors of $\angle BFC$ and $\angle BHC$ concur at a point on $BC.$
65 replies
proglote
Oct 20, 2011
smbellanki
an hour ago
determinant of matrix
jokerjoestar   1
N an hour ago by paxtonw
Calculate the determinant of the matrix below: \[
A =
\begin{bmatrix}
1 & 2 & 3 & \cdots & n-1 & n \\
2 & 3 & 4 & \cdots & n & 1 \\
3 & 4 & 5 & \cdots & 1 & 2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
n-1 & n & 1 & \cdots & n-3 & n-2 \\
n & 1 & 2 & \cdots & n-2 & n-1
\end{bmatrix}
\]
1 reply
jokerjoestar
2 hours ago
paxtonw
an hour ago
a