Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
Arc Midpoints Form Cyclic Quadrilateral
ike.chen   57
N an hour ago by cj13609517288
Source: ISL 2022/G2
In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$.
Prove that $B, C, X,$ and $Y$ are concyclic.
57 replies
1 viewing
ike.chen
Jul 9, 2023
cj13609517288
an hour ago
Complex number
ronitdeb   0
an hour ago
Let $z_1, ... ,z_5$ be vertices of regular pentagon inscribed in a circle whose radius is $2$ and center is at $6+i8$. Find all possible values of $z_1^2+z_2^2+...+z_5^2$
0 replies
ronitdeb
an hour ago
0 replies
Elementary Problems Compilation
Saucepan_man02   29
N an hour ago by Electrodynamix777
Could anyone send some elementary problems, which have tricky and short elegant methods to solve?

For example like this one:
Solve over reals: $$a^2 + b^2 + c^2 + d^2  -ab-bc-cd-d +2/5=0$$
29 replies
Saucepan_man02
May 26, 2025
Electrodynamix777
an hour ago
Generic Real-valued FE
lucas3617   4
N 2 hours ago by GreekIdiot
$f: \mathbb{R} -> \mathbb{R}$, find all functions where $f(2x+f(2y-x))+f(-x)+f(y)=2f(x)+f(y-2x)+f(2y)$ for all $x$,$y \in \mathbb{R}$
4 replies
lucas3617
Apr 25, 2025
GreekIdiot
2 hours ago
Find all possible values of BT/BM
va2010   54
N 2 hours ago by lpieleanu
Source: 2015 ISL G4
Let $ABC$ be an acute triangle and let $M$ be the midpoint of $AC$. A circle $\omega$ passing through $B$ and $M$ meets the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $T$ be the point such that $BPTQ$ is a parallelogram. Suppose that $T$ lies on the circumcircle of $ABC$. Determine all possible values of $\frac{BT}{BM}$.
54 replies
va2010
Jul 7, 2016
lpieleanu
2 hours ago
A Familiar Point
v4913   52
N 2 hours ago by SimplisticFormulas
Source: EGMO 2023/6
Let $ABC$ be a triangle with circumcircle $\Omega$. Let $S_b$ and $S_c$ respectively denote the midpoints of the arcs $AC$ and $AB$ that do not contain the third vertex. Let $N_a$ denote the midpoint of arc $BAC$ (the arc $BC$ including $A$). Let $I$ be the incenter of $ABC$. Let $\omega_b$ be the circle that is tangent to $AB$ and internally tangent to $\Omega$ at $S_b$, and let $\omega_c$ be the circle that is tangent to $AC$ and internally tangent to $\Omega$ at $S_c$. Show that the line $IN_a$, and the lines through the intersections of $\omega_b$ and $\omega_c$, meet on $\Omega$.
52 replies
v4913
Apr 16, 2023
SimplisticFormulas
2 hours ago
Tangential quadrilateral and 8 lengths
popcorn1   72
N 2 hours ago by cj13609517288
Source: IMO 2021 P4
Let $\Gamma$ be a circle with centre $I$, and $A B C D$ a convex quadrilateral such that each of the segments $A B, B C, C D$ and $D A$ is tangent to $\Gamma$. Let $\Omega$ be the circumcircle of the triangle $A I C$. The extension of $B A$ beyond $A$ meets $\Omega$ at $X$, and the extension of $B C$ beyond $C$ meets $\Omega$ at $Z$. The extensions of $A D$ and $C D$ beyond $D$ meet $\Omega$ at $Y$ and $T$, respectively. Prove that \[A D+D T+T X+X A=C D+D Y+Y Z+Z C.\]
Proposed by Dominik Burek, Poland and Tomasz Ciesla, Poland
72 replies
popcorn1
Jul 20, 2021
cj13609517288
2 hours ago
An algorithm for discovering prime numbers?
Lukaluce   3
N 2 hours ago by TopGbulliedU
Source: 2025 Junior Macedonian Mathematical Olympiad P3
Is there an infinite sequence of prime numbers $p_1, p_2, ..., p_n, ...,$ such that for every $i \in \mathbb{N}, p_{i + 1} \in \{2p_i - 1, 2p_i + 1\}$ is satisfied? Explain the answer.
3 replies
Lukaluce
May 18, 2025
TopGbulliedU
2 hours ago
Random concyclicity in a square config
Maths_VC   5
N 2 hours ago by Royal_mhyasd
Source: Serbia JBMO TST 2025, Problem 1
Let $M$ be a random point on the smaller arc $AB$ of the circumcircle of square $ABCD$, and let $N$ be the intersection point of segments $AC$ and $DM$. The feet of the tangents from point $D$ to the circumcircle of the triangle $OMN$ are $P$ and $Q$ , where $O$ is the center of the square. Prove that points $A$, $C$, $P$ and $Q$ lie on a single circle.
5 replies
Maths_VC
Tuesday at 7:38 PM
Royal_mhyasd
2 hours ago
Basic ideas in junior diophantine equations
Maths_VC   3
N 3 hours ago by Royal_mhyasd
Source: Serbia JBMO TST 2025, Problem 3
Determine all positive integers $a, b$ and $c$ such that
$2$ $\cdot$ $10^a + 5^b = 2025^c$
3 replies
Maths_VC
Tuesday at 7:54 PM
Royal_mhyasd
3 hours ago
a