Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Determinant is 1
Entrepreneur   1
N 33 minutes ago by Etkan
If a determinant is of $n^{\text{th}}$ order, and if the constituents of its first, second, ..., $n^{\text{th}}$ rows are the first $n$ figurate numbers of the first, second, ..., $n^{\text{th}}$ orders respectively, show that it's value is $1.$
1 reply
Entrepreneur
an hour ago
Etkan
33 minutes ago
x^2-x divides by n for some n/\omega(n)+1>x>1
NO_SQUARES   1
N 2 hours ago by a_507_bc
Source: 239 MO 2025 8-9 p6
Let a positive integer number $n$ has $k$ different prime divisors. Prove that there exists a positive integer number $x \in \left(1, \frac{n}{k}+1 \right)$ such that $x^2-x$ divides by $n$.
1 reply
NO_SQUARES
3 hours ago
a_507_bc
2 hours ago
Poker hand
Aksudon   1
N 2 hours ago by lucaminiati
Problem: In a standard 52-card deck, how many different five-card poker hands are there of 'two pairs'?

Can someone please explain what is logically wrong with the following solution? (It gives double of the right solution which supposed to be 123552).

13\binom{4}{2}*12\binom{4}{2}*44=247104

Thanks
1 reply
Aksudon
3 hours ago
lucaminiati
2 hours ago
IMO Genre Predictions
ohiorizzler1434   46
N 2 hours ago by Mrcuberoot
Everybody, with IMO upcoming, what are you predictions for the problem genres?


Personally I predict: predict
46 replies
ohiorizzler1434
May 3, 2025
Mrcuberoot
2 hours ago
4 wise men and 100 hats. 3 must guess their numbers
NO_SQUARES   1
N 2 hours ago by noemiemath
Source: 239 MO 2025 10-11 p5
There are four wise men in a row, each sees only those following him in the row, i.e. the $1$st sees the other three, the $2$nd sees the $3$rd and $4$th, and the $3$rd sees only the $4$th. The devil has $100$ hats, numbered from $1$ to $100$, he puts one hat on each wise man, and hides the extra $96$ hats. After that, each wise man (in turn: first the first, then the second, etc.) loudly calls a number, trying to guess the number of his hat. The numbers mentioned should not be repeated. When all the wise men have spoken, they take off their hats and check which one of them has guessed. Can the sages to act in such a way that at least three of them knowingly guessed?
1 reply
NO_SQUARES
3 hours ago
noemiemath
2 hours ago
IMO Shortlist 2011, G4
WakeUp   126
N 2 hours ago by NuMBeRaToRiC
Source: IMO Shortlist 2011, G4
Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear.

Proposed by Ismail Isaev and Mikhail Isaev, Russia
126 replies
WakeUp
Jul 13, 2012
NuMBeRaToRiC
2 hours ago
<DPA+ <AQD =< QIP wanted, incircle circumcircle related
parmenides51   42
N 3 hours ago by AR17296174
Source: IMo 2019 SL G6
Let $I$ be the incentre of acute-angled triangle $ABC$. Let the incircle meet $BC, CA$, and $AB$ at $D, E$, and $F,$ respectively. Let line $EF$ intersect the circumcircle of the triangle at $P$ and $Q$, such that $F$ lies between $E$ and $P$. Prove that $\angle DPA + \angle AQD =\angle QIP$.

(Slovakia)
42 replies
parmenides51
Sep 22, 2020
AR17296174
3 hours ago
Help my diagram has too many points
MarkBcc168   28
N 3 hours ago by AR17296174
Source: IMO Shortlist 2023 G6
Let $ABC$ be an acute-angled triangle with circumcircle $\omega$. A circle $\Gamma$ is internally tangent to $\omega$ at $A$ and also tangent to $BC$ at $D$. Let $AB$ and $AC$ intersect $\Gamma$ at $P$ and $Q$ respectively. Let $M$ and $N$ be points on line $BC$ such that $B$ is the midpoint of $DM$ and $C$ is the midpoint of $DN$. Lines $MP$ and $NQ$ meet at $K$ and intersect $\Gamma$ again at $I$ and $J$ respectively. The ray $KA$ meets the circumcircle of triangle $IJK$ again at $X\neq K$.

Prove that $\angle BXP = \angle CXQ$.

Kian Moshiri, United Kingdom
28 replies
MarkBcc168
Jul 17, 2024
AR17296174
3 hours ago
A lot of circles
ryan17   8
N 3 hours ago by AR17296174
Source: 2019 Polish MO Finals
Denote by $\Omega$ the circumcircle of the acute triangle $ABC$. Point $D$ is the midpoint of the arc $BC$ of $\Omega$ not containing $A$. Circle $\omega$ centered at $D$ is tangent to the segment $BC$ at point $E$. Tangents to the circle $\omega$ passing through point $A$ intersect line $BC$ at points $K$ and $L$ such that points $B, K, L, C$ lie on the line $BC$ in that order. Circle $\gamma_1$ is tangent to the segments $AL$ and $BL$ and to the circle $\Omega$ at point $M$. Circle $\gamma_2$ is tangent to the segments $AK$ and $CK$ and to the circle $\Omega$ at point $N$. Lines $KN$ and $LM$ intersect at point $P$. Prove that $\sphericalangle KAP = \sphericalangle EAL$.
8 replies
ryan17
Jul 9, 2019
AR17296174
3 hours ago
NT FE from Taiwan TST
Kitayama_Yuji   13
N 3 hours ago by bin_sherlo
Source: 2024 Taiwan TST Round 2 Mock P3
Let $\mathbb{N}$ be the set of all positive integers. Find all functions $f\colon \mathbb{N}\to \mathbb{N}$ such that $mf(m)+(f(f(m))+n)^2$ divides $4m^4+n^2f(f(n))^2$ for all positive integers $m$ and $n$.
13 replies
Kitayama_Yuji
Mar 29, 2024
bin_sherlo
3 hours ago
Yet another domino problem
juckter   15
N 3 hours ago by lksb
Source: EGMO 2019 Problem 2
Let $n$ be a positive integer. Dominoes are placed on a $2n \times 2n$ board in such a way that every cell of the board is adjacent to exactly one cell covered by a domino. For each $n$, determine the largest number of dominoes that can be placed in this way.
(A domino is a tile of size $2 \times 1$ or $1 \times 2$. Dominoes are placed on the board in such a way that each domino covers exactly two cells of the board, and dominoes do not overlap. Two cells are said to be adjacent if they are different and share a common side.)
15 replies
juckter
Apr 9, 2019
lksb
3 hours ago
Difference of counts of any 2 colors in any interesting rectangle is at most 1
NO_SQUARES   0
3 hours ago
Source: 239 MO 2025 10-11 p8
Positive integer numbers $n$ and $k > 1$ are given. Losyash likes some of the cells of the $n \times n$ checkerboard. In addition, he is interested in any checkered rectangle with a perimeter of $2n + 2$, the upper-left corner of which coincides with the upper-left corner of the board (there are $n$ such rectangles in total). Given $n$ and $k$, determine whether Losyash can color each cell he likes in one of $k$ colors so that in any rectangle of interest to him the number of cells of any two colors differ by no more than $1$.
0 replies
NO_SQUARES
3 hours ago
0 replies
Sequence with GCD involved
mathematics2004   3
N 3 hours ago by anudeep
Source: 2021 Simon Marais, A2
Define the sequence of integers $a_1, a_2, a_3, \ldots$ by $a_1 = 1$, and
\[ a_{n+1} = \left(n+1-\gcd(a_n,n) \right) \times a_n \]for all integers $n \ge 1$.
Prove that $\frac{a_{n+1}}{a_n}=n$ if and only if $n$ is prime or $n=1$.
Here $\gcd(s,t)$ denotes the greatest common divisor of $s$ and $t$.
3 replies
mathematics2004
Nov 2, 2021
anudeep
3 hours ago
2025 OMOUS Problem 4
enter16180   1
N 3 hours ago by RobertRogo
Source: Open Mathematical Olympiad for University Students (OMOUS-2025)
Find all matrices $M \in M_{n}(\mathbb{C})$ such that following equality holds

$$
\operatorname{rank}(M)+\operatorname{rank}\left(M^{2023}-M^{2025}\right)=\operatorname{rank}\left(M-M^{2}\right)+\operatorname{rank}\left(M^{2023}+M^{2024}\right)
$$
1 reply
enter16180
Apr 18, 2025
RobertRogo
3 hours ago
Sum of multinomial in sublinear time
programjames1   0
Apr 20, 2025
Source: Own
A frog begins at the origin, and makes a sequence of hops either two to the right, two up, or one to the right and one up, all with equal probability.

1. What is the probability the frog eventually lands on $(a, b)$?

2. Find an algorithm to compute this in sublinear time.
0 replies
programjames1
Apr 20, 2025
0 replies
Sum of multinomial in sublinear time
G H J
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
programjames1
3046 posts
#1
Y by
A frog begins at the origin, and makes a sequence of hops either two to the right, two up, or one to the right and one up, all with equal probability.

1. What is the probability the frog eventually lands on $(a, b)$?

2. Find an algorithm to compute this in sublinear time.
Z K Y
N Quick Reply
G
H
=
a