We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
1 viewing
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Practice AMC 12A
freddyfazbear   51
N 11 minutes ago by freddyfazbear
Practice AMC 12A

1. Find the sum of the infinite geometric series 1 + 7/18 + 49/324 + …
A - 36/11, B - 9/22, C - 18/11, D - 18/7, E - 9/14

2. What is the first digit after the decimal point in the square root of 420?
A - 1, B - 2, C - 3, D - 4, E - 5

3. Two circles with radiuses 47 and 96 intersect at two points A and B. Let P be the point 82% of the way from A to B. A line is drawn through P that intersects both circles twice. Let the four intersection points, from left to right be W, X, Y, and Z. Find (PW/PX)*(PY/PZ).
A - 50/5863, B - 47/96, C - 1, D - 96/47, E - 5863/50

4. What is the largest positive integer that cannot be expressed in the form 6a + 9b + 4 + 20d, where a, b, and d are positive integers?
A - 29, B - 38, C - 43, D - 76, E - 82

5. What is the absolute difference of the probabilities of getting at least 6/10 on a 10-question true or false test and at least 3/5 on a 5-question true or false test?
A - 63/1024, B - 63/512, C - 63/256, D - 63/128, E - 0

6. How many arrangements of the letters in the word “sensor” are there such that the two vowels have an even number of letters (remember 0 is even) between them (including the original “sensor”)?
A - 72, B - 108, C - 144, D - 216, E - 432

7. Find the value of 0.9 * 0.97 + 0.5 * 0.1 * (0.5 * 0.97 + 0.5 * 0.2) rounded to the nearest tenth of a percent.
A - 89.9%, B - 90.0%, C - 90.1%, D - 90.2%, E - 90.3%

8. Two painters are painting a room. Painter 1 takes 52:36 to paint the room, and painter 2 takes 26:18 to paint the room. With these two painters working together, how long should the job take?
A - 9:16, B - 10:52, C - 17:32, D - 35:02, E - 39:44

9. Statistics show that people who work out n days a week have a (1/10)(n+2) chance of getting a 6-pack, and the number of people who exercise n days a week is directly proportional to 8 - n (Note that n can only be an integer from 0 to 7, inclusive). A random person is selected. Find the probability that they have a 6-pack.
A - 13/30, B - 17/30, C - 19/30, D - 23/30, E - 29/30

10. A factory must produce 3,000 items today. The manager of the factory initially calls over 25 employees, each producing 5 items per hour starting at 9 AM. However, he needs all of the items to be produced by 9 PM, and realizes that he must speed up the process. At 12 PM, the manager then encourages his employees to work faster by increasing their pay, in which they then all speed up to 6 items per hour. At 1 PM, the manager calls in 15 more employees which make 5 items per hour each. Unfortunately, at 3 PM, the AC stops working and the hot sun starts taking its toll, which slows every employee down by 2 items per hour. At 4 PM, the technician fixes the AC, and all employees return to producing 5 items per hour. At 5 PM, the manager calls in 30 more employees, which again make 5 items per hour. At 6 PM, he calls in 30 more employees. At 7 PM, he rewards all the pickers again, speeding them up to 6 items per hour. But at 8 PM, n employees suddenly crash out and stop working due to fatigue, and the rest all slow back down to 5 items per hour because they are tired. The manager does not have any more employees, so if too many of them drop out, he is screwed and will have to go overtime. Find the maximum value of n such that all of the items can still be produced on time, done no later than 9 PM.
A - 51, B - 52, C - 53, D - 54, E - 55

11. Two congruent right rectangular prisms stand near each other. Both have the same orientation and altitude. A plane that cuts both prisms into two pieces passes through the vertical axes of symmetry of both prisms and does not cross the bottom or top faces of either prism. Let the point that the plane crosses the axis of symmetry of the first prism be A, and the point that the plane crosses the axis of symmetry of the second prism be B. A is 81% of the way from the bottom face to the top face of the first prism, and B is 69% of the way from the bottom face to the top face of the second prism. What percent of the total volume of both prisms combined is above the plane?
A - 19%, B - 25%, C - 50%, D - 75%, E - 81%

12. On an analog clock, the minute hand makes one full revolution every hour, and the hour hand makes one full revolution every 12 hours. Both hands move at a constant rate. During which of the following time periods does the minute hand pass the hour hand?
A - 7:35 - 7:36, B - 7:36 - 7:37, C - 7:37 - 7:38, D - 7:38 - 7:39, E - 7:39 - 7:40

13. How many axes of symmetry does the graph of (x^2)(y^2) = 69 have?
A - 2, B - 3, C - 4, D - 5, E - 6

14. Let f(n) be the sum of the positive integer divisors of n. Find the sum of the digits of the smallest odd positive integer n such that f(n) is greater than 2n.
A - 15, B - 18, C - 21, D - 24, E - 27

15. A basketball has a diameter of 9 inches, and the hoop has a diameter of 18 inches. Peter decides to pick up the basketball and make a throw. Given that Peter has a 1/4 chance of accidentally hitting the backboard and missing the shot, but if he doesn’t, he is guaranteed that the frontmost point of the basketball will be within 18 inches of the center of the hoop at the moment when a great circle of the basketball crosses the plane containing the rim. No part of the ball will extend behind the backboard at any point during the throw, and the rim is attached directly to the backboard. What is the probability that Peter makes the shot?
A - 3/128, B - 3/64, C - 3/32, D - 3/16, E - 3/8

16. Amy purchases 6 fruits from a store. At the store, they have 5 of each of 5 different fruits. How many different combinations of fruits could Amy buy?
A - 210, B - 205, C - 195, D - 185, E - 180

17. Find the area of a cyclic quadrilateral with side lengths 6, 9, 4, and 2, rounded to the nearest integer.
A - 16, B - 19, C - 22, D - 25, E - 28

18. Find the slope of the line tangent to the graph of y = x^2 + x + 1 at the point (2, 7).
A - 2, B - 3, C - 4, D - 5, E - 6

19. Let f(n) = 4096n/(2^n). Find f(1) + f(2) + … + f(12).
A - 8142, B - 8155, C - 8162, D - 8169, E - 8178

20. Find the sum of all positive integers n greater than 1 and less than 16 such that (n-1)! + 1 is divisible by n.
A - 41, B - 44, C - 47, D - 50, E - 53

21. In a list of integers where every integer in the list ranges from 1 to 200, inclusive, and the chance of randomly drawing an integer n from the list is proportional to n if n <= 100 and to 201 - n if n >= 101, what is the sum of the numerator and denominator of the probability that a random integer drawn from the list is greater than 30, when expressed as a common fraction in lowest terms?
A - 1927, B - 2020, C - 2025, D - 3947, E - 3952

22. In a small town, there were initially 9 people who did not have a certain bacteria and 3 people who did. Denote this group to be the first generation. Then those 12 people would randomly get into 6 pairs and reproduce, making the second generation, consisting of 6 people. Then the process repeats for the second generation, where they get into 3 pairs. Of the 3 people in the third generation, what is the probability that exactly one of them does not have the bacteria? Assume that if at least one parent has the bacteria, then the child is guaranteed to get it.
A - 8/27, B - 1/3, C - 52/135, D - 11/27, E - 58/135

23. Amy, Steven, and Melissa each start at the point (0, 0). Assume the coordinate axes are in miles. At t = 0, Amy starts walking along the x-axis in the positive x direction at 0.6 miles per hour, Steven starts walking along the y-axis in the positive y direction at 0.8 miles per hour, and Melissa starts walking along the x-axis in the negative x direction at 0.4 miles per hour. However, a club that does not like them patrols the circumference of the circle x^2 + y^2 = 1. Three officers of the club, equally spaced apart on the circumference of the circle, walk counterclockwise along its circumference and make one revolution every hour. At t = 0, one of the officers of the club is at (1, 0). Any of Amy, Steven, and Melissa will be caught by the club if they walk within 50 meters of one of their 3 officers. How many of the three will be caught by the club?
A - 0, B - 1, C - 2, D - 3, E - Not enough info to determine

24.
A list of 9 positive integers consists of 100, 112, 122, 142, 152, and 160, as well as a, b, and c, with a <= b <= c. The range of the list is 70, both the mean and median are multiples of 10, and the list has a unique mode. How many ordered triples (a, b, c) are possible?
A - 1, B - 2, C - 3, D - 4, E - 5

25. What is the integer closest to the value of tan(83)? (The 83 is in degrees)
A - 2, B - 3, C - 4, D - 6, E - 8
51 replies
freddyfazbear
Friday at 6:35 AM
freddyfazbear
11 minutes ago
AMC 10/AIME Study Forum
PatTheKing806   84
N an hour ago by wittyellie
[center]

Me (PatTheKing806) and EaZ_Shadow have created a AMC 10/AIME Study Forum! Hopefully, this forum wont die quickly. To signup, do /join or \join.

Click here to join! (or do some pushups) :P

People should join this forum if they are wanting to do well on the AMC 10 next year, trying get into AIME, or loves math!
84 replies
PatTheKing806
Mar 27, 2025
wittyellie
an hour ago
Practice AMC 10A
freddyfazbear   58
N an hour ago by freddyfazbear
Practice AMC 10A

1. Find the sum of the infinite geometric series 1 + 7/18 + 49/324 + …
A - 36/11, B - 9/22, C - 18/11, D - 18/7, E - 9/14

2. What is the first digit after the decimal point in the square root of 420?
A - 1, B - 2, C - 3, D - 4, E - 5

3. Caden’s calculator is broken and two of the digits are swapped for some reason. When he entered in 9 + 10, he got 21. What is the sum of the two digits that got swapped?
A - 2, B - 3, C - 4, D - 5, E - 6

4. Two circles with radiuses 47 and 96 intersect at two points A and B. Let P be the point 82% of the way from A to B. A line is drawn through P that intersects both circles twice. Let the four intersection points, from left to right be W, X, Y, and Z. Find (PW/PX)*(PY/PZ).
A - 50/5863, B - 47/96, C - 1, D - 96/47, E - 5863/50

5. Two dice are rolled, and the two numbers shown are a and b. How many possible values of ab are there?
A - 17, B - 18, C - 19, D - 20, E - 21

6. What is the largest positive integer that cannot be expressed in the form 6a + 9b + 4 + 20d, where a, b, and d are positive integers?
A - 29, B - 38, C - 43, D - 76, E - 82

7. What is the absolute difference of the probabilities of getting at least 6/10 on a 10-question true or false test and at least 3/5 on a 5-question true or false test?
A - 63/1024, B - 63/512, C - 63/256, D - 63/128, E - 0

8. How many arrangements of the letters in the word “sensor” are there such that the two vowels have an even number of letters (remember 0 is even) between them (including the original “sensor”)?
A - 72, B - 108, C - 144, D - 216, E - 432

9. Find the value of 0.9 * 0.97 + 0.5 * 0.1 * (0.5 * 0.97 + 0.5 * 0.2) rounded to the nearest tenth of a percent.
A - 89.9%, B - 90.0%, C - 90.1%, D - 90.2%, E - 90.3%

10. Two painters are painting a room. Painter 1 takes 52:36 to paint the room, and painter 2 takes 26:18 to paint the room. With these two painters working together, how long should the job take?
A - 9:16, B - 10:52, C - 17:32, D - 35:02, E - 39:44

11. Suppose that on the coordinate grid, the x-axis represents climate, and the y-axis represents landscape, where -1 <= x, y <= 1 and a higher number for either coordinate represents better conditions along that particular axis. Accordingly, the points (0, 0), (1, 1), (-1, 1), (-1, -1), and (1, -1) represent cities, plains, desert, snowy lands, and mountains, respectively. An area is classified as whichever point it is closest to. Suppose a theoretical new area is selected by picking a random point within the square bounded by plains, desert, snowy lands, and mountains as its vertices. What is the probability that it is a plains?
A - 1 - (1/4)pi, B - 1/5, C - (1/16)pi, D - 1/4, E - 1/8

12. Statistics show that people who work out n days a week have a (1/10)(n+2) chance of getting a 6-pack, and the number of people who exercise n days a week is directly proportional to 8 - n (Note that n can only be an integer from 0 to 7, inclusive). A random person is selected. Find the probability that they have a 6-pack.
A - 13/30, B - 17/30, C - 19/30, D - 23/30, E - 29/30

13. A factory must produce 3,000 items today. The manager of the factory initially calls over 25 employees, each producing 5 items per hour starting at 9 AM. However, he needs all of the items to be produced by 9 PM, and realizes that he must speed up the process. At 12 PM, the manager then encourages his employees to work faster by increasing their pay, in which they then all speed up to 6 items per hour. At 1 PM, the manager calls in 15 more employees which make 5 items per hour each. Unfortunately, at 3 PM, the AC stops working and the hot sun starts taking its toll, which slows every employee down by 2 items per hour. At 4 PM, the technician fixes the AC, and all employees return to producing 5 items per hour. At 5 PM, the manager calls in 30 more employees, which again make 5 items per hour. At 6 PM, he calls in 30 more employees. At 7 PM, he rewards all the pickers again, speeding them up to 6 items per hour. But at 8 PM, n employees suddenly crash out and stop working due to fatigue, and the rest all slow back down to 5 items per hour because they are tired. The manager does not have any more employees, so if too many of them drop out, he is screwed and will have to go overtime. Find the maximum value of n such that all of the items can still be produced on time, done no later than 9 PM.
A - 51, B - 52, C - 53, D - 54, E - 55

14. Find the number of positive integers n less than 69 such that the average of all the squares from 1^2 to n^2, inclusive, is an integer.
A - 11, B - 12, C - 23, D - 24, E - 48

15. Find the number of ordered pairs (a, b) of integers such that (a - b)^2 = 625 - 2ab.
A - 6, B - 10, C - 12, D - 16, E - 20

16. What is the 420th digit after the decimal point in the decimal expansion of 1/13?
A - 4, B - 5, C - 6, D - 7, E - 8

17. Two congruent right rectangular prisms stand near each other. Both have the same orientation and altitude. A plane that cuts both prisms into two pieces passes through the vertical axes of symmetry of both prisms and does not cross the bottom or top faces of either prism. Let the point that the plane crosses the axis of symmetry of the first prism be A, and the point that the plane crosses the axis of symmetry of the second prism be B. A is 81% of the way from the bottom face to the top face of the first prism, and B is 69% of the way from the bottom face to the top face of the second prism. What percent of the total volume of both prisms combined is above the plane?
A - 19%, B - 25%, C - 50%, D - 75%, E - 81%

18. What is the greatest number of positive integer factors an integer from 1 to 100 can have?
A - 10, B - 12, C - 14, D - 15, E - 16

19. On an analog clock, the minute hand makes one full revolution every hour, and the hour hand makes one full revolution every 12 hours. Both hands move at a constant rate. During which of the following time periods does the minute hand pass the hour hand?
A - 7:35 - 7:36, B - 7:36 - 7:37, C - 7:37 - 7:38, D - 7:38 - 7:39, E - 7:39 - 7:40

20. Find the smallest positive integer that is a leg in three different Pythagorean triples.
A - 12, B - 14, C - 15, D - 20, E - 21

21. How many axes of symmetry does the graph of (x^2)(y^2) = 69 have?
A - 2, B - 3, C - 4, D - 5, E - 6

22. Real numbers a, b, and c are chosen uniformly and at random from 0 to 3. Find the probability that a + b + c is less than 2.
A - 4/81, B - 8/81, C - 4/27, D - 8/27, E - 2/3

23. Let f(n) be the sum of the positive integer divisors of n. Find the sum of the digits of the smallest odd positive integer n such that f(n) is greater than 2n.
A - 15, B - 18, C - 21, D - 24, E - 27

24. Find the last three digits of 24^10.
A - 376, B - 576, C - 626, D - 876, E - 926

25. A basketball has a diameter of 9 inches, and the hoop has a diameter of 18 inches. Peter decides to pick up the basketball and make a throw. Given that Peter has a 1/4 chance of accidentally hitting the backboard and missing the shot, but if he doesn’t, he is guaranteed that the frontmost point of the basketball will be within 18 inches of the center of the hoop at the moment when a great circle of the basketball crosses the plane containing the rim. No part of the ball will extend behind the backboard at any point during the throw, and the rim is attached directly to the backboard. What is the probability that Peter makes the shot?
A - 3/128, B - 3/64, C - 3/32, D - 3/16, E - 3/8
58 replies
freddyfazbear
Mar 24, 2025
freddyfazbear
an hour ago
hcssim application question
enya_yurself   7
N an hour ago by akliu
do they send the Interesting Test to everyone who applied or do they read the friendly letter first and only send to the kids they like?
7 replies
enya_yurself
Mar 17, 2025
akliu
an hour ago
Inspired by Crux 4975
sqing   1
N an hour ago by sqing
Source: Own
Let $ a,b\geq 0 $ and $a^2+b^2+ab+a+b=1. $ Prove that
$$ a^2+b^2+3ab(a+ b-1 ) \geq \frac{1}{9} $$$$\frac{4}{9}\geq a^2+b^2+3ab(a+ b ) \geq \frac{3-\sqrt 5}{2}$$$$\frac{7}{9}\geq a^2+b^2+3ab(a+ b +1) \geq \frac{3-\sqrt 5}{2}$$
1 reply
sqing
2 hours ago
sqing
an hour ago
the nearest distance in geometric sequence
David-Vieta   7
N 2 hours ago by Anthony2025
Source: 2024 China High School Olympics A P1
A positive integer \( r \) is given, find the largest real number \( C \) such that there exists a geometric sequence $\{ a_n \}_{n\ge 1}$ with common ratio \( r \) satisfying
$$
\| a_n \| \ge C
$$for all positive integers \( n \). Here, $\|  x \|$ denotes the distance from the real number \( x \) to the nearest integer.
7 replies
David-Vieta
Sep 8, 2024
Anthony2025
2 hours ago
Geometric Sequence Squared
scls140511   5
N 2 hours ago by Anthony2025
Source: China Round 1 (Gao Lian)
2 Let there be an infinite geometric sequence $\{a_n\}$, where the common ratio $0<|q|<1$. Given that

$$\sum_{i=1}^\infty a_n = \sum_{i=1}^\infty a_n^2$$
find the largest possible range of $a_2$.
5 replies
scls140511
Sep 8, 2024
Anthony2025
2 hours ago
An FE lemma about you!
gghx   11
N 2 hours ago by jasperE3
Source: Own, inspired by problem 556 in the FE marathon
Suppose $f:\mathbb{R}\rightarrow \mathbb{R}$ is your favourite function, $g:\mathbb{R}\rightarrow \mathbb{R}$ is your mother's favourite function, and $h:\mathbb{R}\rightarrow \mathbb{R}$ is your father's favourite function. It was discovered that for any reals $x,y$, $$f(xy+g(x))=xf(y)+h(x)$$Prove that you are boring.

(Hint: you might need to use the quotable result that if someone's favourite function is a linear polynomial, they are boring)
11 replies
gghx
Jun 14, 2022
jasperE3
2 hours ago
Perfect Numbers
steven_zhang123   1
N 2 hours ago by lyllyl
Source: China TST 2001 Quiz 8 P2
If the sum of all positive divisors (including itself) of a positive integer $n$ is $2n$, then $n$ is called a perfect number. For example, the sum of the positive divisors of 6 is $1 + 2 + 3 + 6 = 2 \times 6$, hence 6 is a perfect number.
Prove: There does not exist a perfect number of the form $p^a q^b r^c$, where $a, b, c$ are positive integers, and $p, q, r$ are odd primes.
1 reply
steven_zhang123
5 hours ago
lyllyl
2 hours ago
How close to an integer
scls140511   1
N 2 hours ago by Anthony2025
Source: 2024 China Round 2
Round 2

1 Define the isolation index of real number $q$ to be $\min ( \{x\}, 1-\{x\})$, where $[x]$ is the largest integer no greater than $x$, and $\{x\}=x-[x]$. For each positive integer $r$, find the maximum possible real number $C$ such as there exists an infinite geometric sequence with common ratio $r$ and isolation index of each term being at least $C$.
1 reply
scls140511
Sep 8, 2024
Anthony2025
2 hours ago
A problem
jokehim   3
N 2 hours ago by KhuongTrang
Source: me
Let $a,b,c>0$ and prove $$\sqrt{\frac{a+b}{c}}+\sqrt{\frac{c+b}{a}}+\sqrt{\frac{a+c}{b}}\ge \frac{3\sqrt{6}}{2}\cdot\sqrt{\frac{3(a^3+b^3+c^3)}{(a+b+c)^3}+1}.$$
3 replies
jokehim
Mar 1, 2025
KhuongTrang
2 hours ago
Probably appeared before
steven_zhang123   1
N 2 hours ago by lyllyl
In the plane, there are two line segments $AB$ and $CD$, with $AB \neq CD$. Prove that there exists and only exists one point $P$ such that $\triangle PAB \sim \triangle PCD$.($P$ corresponds to $P$, $A$ corresponds to $C$)
Click to reveal hidden text
1 reply
steven_zhang123
3 hours ago
lyllyl
2 hours ago
Hard geometry
jannatiar   2
N 2 hours ago by sami1618
Source: 2024 AlborzMO P4
In triangle \( ABC \), let \( I \) be the \( A \)-excenter. Points \( X \) and \( Y \) are placed on line \( BC \) such that \( B \) is between \( X \) and \( C \), and \( C \) is between \( Y \) and \( B \). Moreover, \( B \) and \( C \) are the contact points of \( BC \) with the \( A \)-excircle of triangles \( BAY \) and \( AXC \), respectively. Let \( J \) be the \( A \)-excenter of triangle \( AXY \), and let \( H' \) be the reflection of the orthocenter of triangle \( ABC \) with respect to its circumcenter. Prove that \( I \), \( J \), and \( H' \) are collinear.

Proposed by Ali Nazarboland
2 replies
jannatiar
Mar 4, 2025
sami1618
2 hours ago
Solve this hard problem:
slimshadyyy.3.60   3
N 3 hours ago by Nguyenhuyen_AG
Let a,b,c be positive real numbers such that x +y+z = 3. Prove that
yx^3 +zy^3+xz^3+9xyz≤ 12.
3 replies
slimshadyyy.3.60
Yesterday at 10:46 PM
Nguyenhuyen_AG
3 hours ago
USACO US Open
neeyakkid23   19
N Mar 26, 2025 by aidan0626
Howd you all do?

Also will a 766 make bronze -> silver?
19 replies
neeyakkid23
Mar 25, 2025
aidan0626
Mar 26, 2025
USACO US Open
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
neeyakkid23
104 posts
#1 • 1 Y
Y by MathPerson12321
Howd you all do?

Also will a 766 make bronze -> silver?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BS2012
953 posts
#2 • 2 Y
Y by SweetTangyOrange, MathPerson12321
270 first gold
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ethan2011
244 posts
#3 • 1 Y
Y by Zhaom
neeyakkid23 wrote:
Howd you all do?

Also will a 766 make bronze -> silver?

probably
I got 444 on silver :sob:
I need to lock in for coding rather than grinding math all the time.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bot1132
126 posts
#4
Y by
bronze p1: also easier. count the number of single moves that beat both of the opponents, use set
bronze p2: quite a bit easier than previous contests? just count the number of distinct numbers that appear at least twice and is not the greatest
bronze p3: strange problem??? lower_bound bash and required constant opimization
This post has been edited 1 time. Last edited by bot1132, Mar 25, 2025, 2:23 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
neeyakkid23
104 posts
#5
Y by
bot1132 wrote:
bronze p1: quite a bit easier than previous contests? just count the number of distinct numbers that appear at least twice and is not the greatest
bronze p2: also easier. count the number of single moves that beat both of the opponents, use set
bronze p3: strange problem??? lower_bound bash and required constant opimization

I think you switched p1 and p2 but yeah it was quite easy
This is why cutoffs will most likely be 700-750
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KevinChen_Yay
212 posts
#6
Y by
should i do usaco if i can code answer for amc 10 problems
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
weihou0
28 posts
#7
Y by
You can try
Usaco is different tho
Amc10 score does not correlate AT ALL
Because amc 10 problems are made to be solved by humans without the aid of a computer
But usaco ones are not
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathandski
727 posts
#8 • 1 Y
Y by KevinChen_Yay
KevinChen_Yay wrote:
should i do usaco if i can code answer for amc 10 problems

A lot of harder USACO problems (1600+ CodeForces rating) are heavily math dependent so this is a really good sign. Learning coding also massively buffs your combo ability so you should definitely do it.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BS2012
953 posts
#9 • 1 Y
Y by KevinChen_Yay
Mathandski wrote:
KevinChen_Yay wrote:
should i do usaco if i can code answer for amc 10 problems

A lot of harder USACO problems (1600+ CodeForces rating) are heavily math dependent so this is a really good sign. Learning coding also massively buffs your combo ability so you should definitely do it.

real Gold P1 was just basic AMC level combo (missed like 4 test cases for some reason)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RainbowSquirrel53B
586 posts
#10
Y by
i took bronze and the first two were rly easy and the last one was hard, does anyone have a solution for that?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
harrytang
1 post
#11
Y by
do u think 740 will make gold? im scared its gonna be 750
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HumanCalculator9
6231 posts
#12
Y by
Silver review:
p1: honestly not too bad, full solved in 1h20m
p2: POV binary search (I did not solve during test, but notice that if you graph out the IDs that can interact you just get a bunch of lines)
p3: binary search strikes back (figured out the c=0 case during test but couldn't code, extended after because usaco for some reason put max c as 10)

Overall, if I had less of an implementation skill issue, could have gotten around a 525. Actually got about a 460.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bot1132
126 posts
#13
Y by
RainbowSquirrel53B wrote:
i took bronze and the first two were rly easy and the last one was hard, does anyone have a solution for that?

for each query, loop through all possible moos (26*25 total). for simplicity let the moo be "abb". its obviously optimal to pick the first "a" to the right of the left bound, and the last "b" to the left of the right bound (this can be done in log time with binary search). then for the middle "b", we find the "b" closest to the middle of the positions of the two characters.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
neeyakkid23
104 posts
#14
Y by
bot1132 wrote:
RainbowSquirrel53B wrote:
i took bronze and the first two were rly easy and the last one was hard, does anyone have a solution for that?

for each query, loop through all possible moos (26*25 total). for simplicity let the moo be "abb". its obviously optimal to pick the first "a" to the right of the left bound, and the last "b" to the left of the right bound (this can be done in log time with binary search). then for the middle "b", we find the "b" closest to the middle of the positions of the two characters.

thats what i tried doing but i sold
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bot1132
126 posts
#15
Y by
neeyakkid23 wrote:
bot1132 wrote:
RainbowSquirrel53B wrote:
i took bronze and the first two were rly easy and the last one was hard, does anyone have a solution for that?

for each query, loop through all possible moos (26*25 total). for simplicity let the moo be "abb". its obviously optimal to pick the first "a" to the right of the left bound, and the last "b" to the left of the right bound (this can be done in log time with binary search). then for the middle "b", we find the "b" closest to the middle of the positions of the two characters.

thats what i tried doing but i sold

its very hard to get this to pass, because its 3*10^8 operations
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RainbowSquirrel53B
586 posts
#16
Y by
ya i gave up on the third subtask so i just made the program solve queries of 1 :skull:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
akliu
1741 posts
#17
Y by
figured out p2 and p3, but was tired and decided to not impl and skip this contest
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
tigerbw
97 posts
#18
Y by
hoping that 700 is gold cutoff again :maybe:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
LearnMath_105
137 posts
#19
Y by
the general consensus seems to be that this contest was significantly easier than the rest so its time to see if usaco will have a non 700 cutoff this year
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aidan0626
1795 posts
#21 • 1 Y
Y by MathPerson12321
Silver review:
p1: honestly not too bad, full solved in 1h20m
p2: POV binary search (I did not solve during test, but notice that if you graph out the IDs that can interact you just get a bunch of lines)
p3: binary search strikes back (figured out the c=0 case during test but couldn't code, extended after because usaco for some reason put max c as 10)

Overall, if I had less of an implementation skill issue, could have gotten around a 525. Actually got about a 460.

wait how do you solve p1 :sob:
Z K Y
N Quick Reply
G
H
=
a