ka April Highlights and 2025 AoPS Online Class Information
jlacosta0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.
WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.
Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Intermediate: Grades 8-12
Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
The graph of the quadratic polynomial with real coefficients y = px^2 + qx + r, called G1, intersects the graph of the polynomial y = x^2, called G2, at points A and B. The lines tangent to G2 at points A and B intersect at point C. It is known that point C lies on G1. What is the value of p?
Let be a set of integers satisfying the following property: For every positive integer and every set of coefficients , all integer roots of the polynomial are also elements of . It is given that contains all numbers of the form where are positive integers. Prove that contains all integers.
Converting from base to base 10, we get for a postive integer because its a divisor. Then you can simplify this to and since n or b cant be negative that means n has to be from 1 to 9 exclusive. Then casework from 2-8, and u get n=7 then b=21 and n=8 then b=40 so its 70
First, note that so it follows that must be a divisor of The only divisors of greater than are and so it follows that the possible values of are and yielding an answer of
9b+7 is divisible by b+7, so 9b+7 - 9(b+7) will still be divisible by b+7, so -56 is divisible by b+7. we first try -56-7=-49, so one b possibility could be 49. 49-7=42, 42/2 = 21, 21 is another possibility. 21-7=14, 14/2 = 7, which is less than 9, so we only have 21 and 49, giving us 70.
By the definition of a divisor, for an integer . Clearly does not work. So now we can just try every single value.
no gives which doesn't work gives which doesn't work gives which doesn't work gives which doesn't work gives which doesn't work gives which does work gives which does work
By the definition of a divisor, for an integer . Clearly does not work. So now we can just try every single value.
no gives which doesn't work gives which doesn't work gives which doesn't work gives which doesn't work gives which doesn't work gives which does work gives which does work
I was stuck on this problem for some reason I don't know why
The best way to tackle this problem is to convert everything to variables so first 17 base b = b + 7 and 97 base b = 9b+7 so we can just make a variable when multiplied by it it equals 97 base b
So first to do that we can simplify it like 9b+7 = x(b+7) for some value of x then when we multiply that out we get 9b+7=bx+7x. Because we want to solve for xb we have to subtract that on both sides to get 9b+7-bx= 7x then in any situation like this we have to factor out the b, but first we can subtract 7 on both sides.
When we do that we get b(9-x)= 7(x-1) which when we divide both sides we get
b= (7(x-1))/(9-x) we get this easy equation to solve because we know that x has to be a single digit number because anything greater than 9 won't work so we get that after guess and check x= 7 and 8 so when we plug that in we get 21 and 49, so when we add those together you get
This post has been edited 2 times. Last edited by sadas123, Feb 9, 2025, 4:44 PM
b+7 is divisible by 9b+7, but because b+7 is divisible by 9b+63, then b+7 is divisible by 56. And B+7 is greater than 7, so b=21 or 49[Click][sounds stupid but I got b+7 is divisible by 8b, and did a lot of stupid stuff to get -6+-5+-3+0+1+7+21+49=64 cause I forgot b is greater than 9, but luckily I realized this at the end.]
Find the sum of all integer bases for which is a divisor of
We need , so . Let , do casework and bounding.
If then so , doesn't work.
If then so , doesn't work.
If then so , which does work.
If then so , which does work.
If then so , doesn't work.
Our answer is .
(97)b =9b+7
(17)b=b+7
So b+7 divides 9b+7
gcd(9b+7,b+7)=b+7
gcd(-56,b+7)=b+7
So we get b+7 divides -56
Now , 56=2*2*2*7 and factors greater than 9+7 are 28 and 56 itself
So, b=21 or 49
Sum =70(answer)