Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
UC Berkeley Integration Bee 2025 Bracket Rounds
Silver08   52
N 7 minutes ago by Aiden-1089
Regular Round

Quarterfinals

Semifinals

3rd Place Match

Finals
52 replies
Silver08
May 9, 2025
Aiden-1089
7 minutes ago
Algebra inequalities
TUAN2k8   0
24 minutes ago
Source: Own
Is that true?
Let $a_1,a_2,...,a_n$ be real numbers such that $0 \leq a_i \leq 1$ for all $1 \leq i \leq n$.
Prove that: $\sum_{1 \leq i<j \leq n} (a_i-a_j)^2 \leq \frac{n}{2}$.
0 replies
1 viewing
TUAN2k8
24 minutes ago
0 replies
geometry
EeEeRUT   1
N 25 minutes ago by ItzsleepyXD
Source: TMO 2025
Let $D,E$ and $F$ be touch points of the incenter of $\triangle ABC$ at $BC, CA$ and $AB$, respectively. Let $P,Q$ and $R$ be the circumcenter of triangles $AFE, BDF$ and $CED$, respectively. Show that $DP, EQ$ and $FR$ concurrent.
1 reply
EeEeRUT
29 minutes ago
ItzsleepyXD
25 minutes ago
Spanish Mathematical Olympiad 2002, Problem 1
OmicronGamma   3
N 29 minutes ago by NicoN9
Source: Spanish Mathematical Olympiad 2002
Find all the polynomials $P(t)$ of one variable that fullfill the following for all real numbers $x$ and $y$:
$P(x^2-y^2) = P(x+y)P(x-y)$.
3 replies
OmicronGamma
Jun 2, 2017
NicoN9
29 minutes ago
Inspired by lbh_qys.
sqing   3
N an hour ago by lbh_qys
Source: Own
Let $ a,b>0   $ . Prove that
$$ \frac{a}{a^2+a +b+1}+ \frac{b}{b^2+a +b+1}  \leq  \frac{1}{2} $$$$ \frac{a}{a^2+ab+a+b+1}+ \frac{b}{b^2+ab+a+b+1} \leq   \sqrt 2-1  $$$$\frac{a}{a^2+ab+a+1}+ \frac{b}{b^2+ab+b+1} \leq  \frac{2(2\sqrt 2-1)}{7} $$$$\frac{a}{a^2+ab+b+1}+ \frac{b}{b^2+ab+a+1} \leq  \frac{2(2\sqrt 2-1)}{7} $$
3 replies
sqing
3 hours ago
lbh_qys
an hour ago
Additive set with special property
the_universe6626   1
N an hour ago by jasperE3
Source: Janson MO 1 P2
Let $S$ be a nonempty set of positive integers such that:
$\bullet$ if $m,n\in S$ then $m+n\in S$.
$\bullet$ for any prime $p$, there exists $x\in S$ such that $p\nmid x$.
Prove that the set of all positive integers not in $S$ is finite.

(Proposed by cknori)
1 reply
the_universe6626
Feb 21, 2025
jasperE3
an hour ago
ISI UGB 2025 P4
SomeonecoolLovesMaths   8
N an hour ago by chakrabortyahan
Source: ISI UGB 2025 P4
Let $S^1 = \{ z \in \mathbb{C} \mid |z| =1 \}$ be the unit circle in the complex plane. Let $f \colon S^1 \longrightarrow S^2$ be the map given by $f(z) = z^2$. We define $f^{(1)} \colon = f$ and $f^{(k+1)} \colon = f \circ f^{(k)}$ for $k \geq 1$. The smallest positive integer $n$ such that $f^{(n)}(z) = z$ is called the period of $z$. Determine the total number of points in $S^1$ of period $2025$.
(Hint : $2025 = 3^4 \times 5^2$)
8 replies
SomeonecoolLovesMaths
Sunday at 11:24 AM
chakrabortyahan
an hour ago
ISI UGB 2025 P3
SomeonecoolLovesMaths   12
N an hour ago by Rohit-2006
Source: ISI UGB 2025 P3
Suppose $f : [0,1] \longrightarrow \mathbb{R}$ is differentiable with $f(0) = 0$. If $|f'(x) | \leq f(x)$ for all $x \in [0,1]$, then show that $f(x) = 0$ for all $x$.
12 replies
SomeonecoolLovesMaths
Sunday at 11:32 AM
Rohit-2006
an hour ago
So Many Terms
oVlad   7
N 2 hours ago by NuMBeRaToRiC
Source: KöMaL A. 765
Find all functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy the following equality for all $x,y\in\mathbb{R}$ \[f(x)f(y)-f(x-1)-f(y+1)=f(xy)+2x-2y-4.\]Proposed by Dániel Dobák, Budapest
7 replies
oVlad
Mar 20, 2022
NuMBeRaToRiC
2 hours ago
Cauchy like Functional Equation
ZETA_in_olympiad   3
N 2 hours ago by jasperE3
Find all functions $f:\bf R^{\geq 0}\to R$ such that $$f(x^2)+f(y^2)=f\left (\dfrac{x^2y^2-2xy+1}{x^2+2xy+y^2}\right)$$for all $x,y>0$ and $xy>1.$
3 replies
ZETA_in_olympiad
Aug 20, 2022
jasperE3
2 hours ago
special polynomials and probability
harazi   12
N 2 hours ago by MathLuis
Source: USA TST 2005, Problem 3, created by Harazi and Titu
We choose random a unitary polynomial of degree $n$ and coefficients in the set $1,2,...,n!$. Prove that the probability for this polynomial to be special is between $0.71$ and $0.75$, where a polynomial $g$ is called special if for every $k>1$ in the sequence $f(1), f(2), f(3),...$ there are infinitely many numbers relatively prime with $k$.
12 replies
harazi
Jul 14, 2005
MathLuis
2 hours ago
Hard to approach it !
BogG   131
N 3 hours ago by Giant_PT
Source: Swiss Imo Selection 2006
Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.
131 replies
BogG
May 25, 2006
Giant_PT
3 hours ago
Derivative of unknown continuous function
smartvong   0
Today at 1:05 AM
Source: UM Mathematical Olympiad 2024
Let $f: \mathbb{R} \to \mathbb{R}$ be a function whose derivative is continuous on $[0,1]$. Show that
$$\lim_{n \to \infty} \sum^n_{k = 1}\left[f\left(\frac{k}{n}\right) - f\left(\frac{2k - 1}{2n}\right)\right] = \frac{f(1) - f(0)}{2}.$$
0 replies
smartvong
Today at 1:05 AM
0 replies
Invertible matrices in F_2
smartvong   0
Today at 12:41 AM
Source: UM Mathematical Olympiad 2024
Let $n \ge 2$ be an integer and let $\mathcal{S}_n$ be the set of all $n \times n$ invertible matrices in which their entries are $0$ or $1$. Let $m_A$ be the number of $1$'s in the matrix $A$. Determine the minimum and maximum values of $m_A$ in terms of $n$, as $A$ varies over $S_n$.
0 replies
smartvong
Today at 12:41 AM
0 replies
tangents form equilateral triangle
jasperE3   2
N Apr 30, 2025 by Rohit-2006
Source: VJIMC 2004 1.1
Suppose that $f:[0,1]\to\mathbb R$ is a continuously differentiable function such that $f(0)=f(1)=0$ and $f(a)=\sqrt3$ for some $a\in(0,1)$. Prove that there exist two tangents to the graph of $f$ that form an equilateral triangle with an appropriate segment of the $x$-axis.
2 replies
jasperE3
Jul 2, 2021
Rohit-2006
Apr 30, 2025
tangents form equilateral triangle
G H J
G H BBookmark kLocked kLocked NReply
Source: VJIMC 2004 1.1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11333 posts
#1 • 1 Y
Y by HWenslawski
Suppose that $f:[0,1]\to\mathbb R$ is a continuously differentiable function such that $f(0)=f(1)=0$ and $f(a)=\sqrt3$ for some $a\in(0,1)$. Prove that there exist two tangents to the graph of $f$ that form an equilateral triangle with an appropriate segment of the $x$-axis.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Shoelace Thm.
433 posts
#2 • 1 Y
Y by pankajsinha
Actually this doesn't require continuity of the derivative. There exist two points $x_1, x_2 \in (0,1) $ such that $f'(x_1) > 0, f'(x_2) < 0$ (otherwise $f$ would be strictly increasing or decreasing over the whole interval, contradicting $f(0) = f(1)$). Hence there exists $x \in (x_1, x_2)$ for which $f'(x) = 0$, because the derivative has the intermediate value property. Now the absolute maximum of $f$ must occur at the location of such an $x$, hence there actually exists an $x \in (0,1)$ for which $f'(x) = 0$ and $f(x) \ge \sqrt{3}$. Then if $\sigma$ denotes the slope function, note that $\sigma(0,x) > \sqrt{3}, \sigma(x, 1) < -\sqrt{3}$ and by the mean value, intermediate value properties there exists $a_1 \in (0,x), a_2 \in (x,0)$ such that $f'(a_1) = \sqrt{3}, f'(a_2) = -\sqrt{3}$. The corresponding tangents to the graph of $f$ running through $a_1$ and $a_2$ (i) intersect the x-axis at $60^{\circ}$ angles, (ii) do not intersect on the x-axis, and (iii) are not parallel hence intersect (somewhere off the x-axis). This is the desired equilateral triangle then.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rohit-2006
243 posts
#4
Y by
Easy problem... :fool:
$f'(x)$ is continuous. And given $f(0)=f(1)=0$ By Rolle's theorem there exist $c\in(0,1)$ such that $f'(c)=0$. Now there is a $a\in(0,1)$ such that $f(a)=\sqrt{3}$. So $f(a)\leq f(c)$. Now applying LMVT on $(0,c)$ we have a $k_1\in(0,c)$ such that
$$f'(k_1)=\frac{f(c)-f(0)}{c-0}\geq\frac{\sqrt{3}}{c}>\sqrt{3}$$Similarly applying LMVT on $(c,1)$ we have a $k_2\in(c,1)$ such that
$$f'(k_2)=\frac{f(1)-f(c)}{1-c}\leq\frac{-\sqrt{3}}{1-c}<-\sqrt{3}$$Now apply IVT on $(k_1,c)$ we have a $y_1\in(k_1,c)$ such that $f'(y_1)=\sqrt{3}$ and similarly we have a $y_2\in(c,k_2)$ such that $f'(y_2)=-\sqrt{3}$. Easy to see that tangents at $y_1,y_2$ makes an equilateral triangle with finite segment on x axis.
Z K Y
N Quick Reply
G
H
=
a