ka April Highlights and 2025 AoPS Online Class Information
jlacosta0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.
WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.
Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Intermediate: Grades 8-12
Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:
To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.
More specifically:
For new threads:
a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.
Examples: Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿) Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"
b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.
Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".
c) Good problem statement:
Some recent really bad post was:
[quote][/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.
For answers to already existing threads:
d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve , do not answer with " is a solution" only. Either you post any kind of proof or at least something unexpected (like " is the smallest solution). Someone that does not see that is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.
e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.
To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!
Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).
The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
John has 10 marbles with the colors red, green, or blue, all either transparent or translucent. He arranged them in a circle with the following conditions:
3 marbles right beside each other cannot be the same color
The marble across from any marble (assuming John makes a perfect circle) cannot be the same color
Red cannot be in between 2 blues
Blue cannot be between 2 greens
Green cannot be between two Reds
How many different ways can John organize these marbles? State "Impossible" if you think there is no solution. State "Undefined" if one rule doesn't follow another
What if John arranged them into two rows with 5 marbles each all right beside each other. What about 5 rows with 2 marbles each?
Post your answer down below
I just thought of this question right off the top of my head, and I didn't have time to do it, but I'd love to see your answers!
Edit: I just realized "What if John arranged them into two rows with 5 marbles each all right beside each other. What about 5 rows with 2 marbles each?" Is a bit confusing, what I meant was that if you arrange the marbles 2 by 5 (one on the top), the arrow points to what is across from that marble. Same with the 5 by 2, the arrows point that is across.
Math Problem I cant figure out how to do without bashing
equalsmc22
Nan hour ago
by EthanNg6
Hi,
I cant figure out how to do these 2 problems without bashing. Do you guys have any ideas for an elegant solution? Thank you!
Prob 1.
An RSM sports field has a square shape. Poles with letters M, A, T, H are located at the corners of the square (see the diagram). During warm up, a student starts at any pole, runs to another pole along a side of the square or across the field along diagonal MT (only in the direction from M to T), then runs to another pole along a side of the square or along diagonal MT, and so on. The student cannot repeat a run along the same side/diagonal of the square in the same direction. For instance, she cannot run from M to A twice, but she can run from M to A and at some point from A to M. How many different ways are there to complete the warm up that includes all nine possible runs (see the diagram)? One possible way is M-A-T-H-M-H-T-A-M-T (picture attached)
Prob 2.
In the expression 5@5@5@5@5 you replace each of the four @ symbols with either +, or, or x, or . You can insert one or more pairs of parentheses to control the order of operations. Find the second least whole number that CANNOT be the value of the resulting expression. For example, each of the numbers 25=5+5+5+5+5 and 605+(5+5)×5+5 can be the value of the resulting expression.
Prob 3. (This isnt bashing I don't understand how to do it though)
Suppose BC = 3AB in rectangle ABCD. Points E and F are on side BC such that BE = EF = FC. Compute the sum of the degree measures of the four angles EAB, EAF, EAC, EAD.
P.S. These are from an RSM olympiad. The answers are
Let be an acute triangle with incentre and . Let lines and intersect the circumcircle of at and , respectively. Consider points and such that and are parallelograms (with , and ). Let be the point of intersection of lines and . Prove that points , and are concyclic.
For each positive integer , the Bank of Cape Town issues coins of denomination . Given a finite collection of such coins (of not necessarily different denominations) with total value at most most , prove that it is possible to split this collection into or fewer groups, such that each group has total value at most .
Given any set of four distinct positive integers, we denote the sum by . Let denote the number of pairs with for which divides . Find all sets of four distinct positive integers which achieve the largest possible value of .
You can use mass points. The triangles and intersect along the altitude from . Since and are both in the plane, their intersection with the altitude is also in the plane. We can use triangle to find the mass at that intersection, like so:
Then we can use triangle to find the mass at :
This gives
This post has been edited 4 times. Last edited by programjames1, Mar 26, 2025, 7:51 PM