Y by
I got a difficult equation for users to solve:
Find all functions f: R to R, so that to all real numbers x and y,
1+f(x)f(y)=f(x+y)+f(xy)+xy(x+y-2) holds.
Find all functions f: R to R, so that to all real numbers x and y,
1+f(x)f(y)=f(x+y)+f(xy)+xy(x+y-2) holds.