G
Topic
First Poster
Last Poster
An nxn Checkboard
MithsApprentice   26
N 42 minutes ago by NicoN9
Source: USAMO 1999 Problem 1
Some checkers placed on an $n \times n$ checkerboard satisfy the following conditions:

(a) every square that does not contain a checker shares a side with one that does;

(b) given any pair of squares that contain checkers, there is a sequence of squares containing checkers, starting and ending with the given squares, such that every two consecutive squares of the sequence share a side.

Prove that at least $(n^{2}-2)/3$ checkers have been placed on the board.
26 replies
MithsApprentice
Oct 3, 2005
NicoN9
42 minutes ago
Is this FE solvable?
Mathdreams   4
N an hour ago by Mathdreams
Find all $f:\mathbb{R} \rightarrow \mathbb{R}$ such that \[f(2x+y) + f(x+f(2y)) = f(x)f(y) - xy\]for all reals $x$ and $y$.
4 replies
+1 w
Mathdreams
Tuesday at 6:58 PM
Mathdreams
an hour ago
Coaxial circles related to Gergon point
Headhunter   0
an hour ago
Source: I tried but can't find the source...
Hi, everyone.

In $\triangle$$ABC$, $Ge$ is the Gergon point and the incircle $(I)$ touch $BC$, $CA$, $AB$ at $D$, $E$, $F$ respectively.
Let the circumcircles of $\triangle IDGe$, $\triangle IEGe$, $\triangle IFGe$ be $O_{1}$ , $O_{2}$ , $O_{3}$ respectively.

Reflect $O_{1}$ in $ID$ and then we get the circle $O'_{1}$
Reflect $O_{2}$ in $IE$ and then the circle $O'_{2}$
Reflect $O_{3}$ in $IF$ and then the circle $O'_{3}$

Prove that $O'_{1}$ , $O'_{2}$ , $O'_{3}$ are coaxial.
0 replies
Headhunter
an hour ago
0 replies
Equation with powers
a_507_bc   6
N 2 hours ago by EVKV
Source: Serbia JBMO TST 2024 P1
Find all non-negative integers $x, y$ and primes $p$ such that $$3^x+p^2=7 \cdot 2^y.$$
6 replies
a_507_bc
May 25, 2024
EVKV
2 hours ago
no numbers of the form 80...01 are squares
Marius_Avion_De_Vanatoare   2
N 2 hours ago by EVKV
Source: Moldova JTST 2024 P5
Prove that a number of the form $80\dots01$ (there is at least 1 zero) can't be a perfect square.
2 replies
Marius_Avion_De_Vanatoare
Jun 10, 2024
EVKV
2 hours ago
f((x XOR f(y)) + y) = (f(x) XOR y) + y
the_universe6626   3
N 2 hours ago by jasperE3
Source: Janson MO 5 P4
Find all functions $f:\mathbb{Z}_{\ge0}\rightarrow\mathbb{Z}_{\ge0}$ such that
\[f((x\oplus f(y))+y)=(f(x)\oplus y)+y\]Note: $\oplus$ denotes the bitwise XOR operation. For example, $1001_2 \oplus 101_2 = 1100_2$.

(Proposed by ja.)
3 replies
the_universe6626
Feb 21, 2025
jasperE3
2 hours ago
2024 8's
Marius_Avion_De_Vanatoare   3
N 2 hours ago by EVKV
Source: Moldova JTST 2024 P2
Prove that the number $ \underbrace{88\dots8}_\text{2024\; \textrm{times}}$ is divisible by 2024.
3 replies
Marius_Avion_De_Vanatoare
Jun 10, 2024
EVKV
2 hours ago
pretty well known
dotscom26   0
2 hours ago
Let $\triangle ABC$ be a scalene triangle such that $\Omega$ is its incircle. $AB$ is tangent to $\Omega$ at $D$. A point $E$ ($E \notin \Omega$) is located on $BC$.

Let $\omega_1$, $\omega_2$, and $\omega_3$ be the incircles of the triangles $BED$, $ADE$, and $AEC$, respectively.

Show that the common tangent to $\omega_1$ and $\omega_3$ is also tangent to $\omega_2$.

0 replies
dotscom26
2 hours ago
0 replies
Thanks u!
Ruji2018252   6
N 2 hours ago by jasperE3
Find all $f:\mathbb{R}\to\mathbb{R}$ and
\[ f(x+y)+f(x^2+f(y))=f(f(x))^2+f(x)+f(y)+y,\forall x,y\in\mathbb{R}\]
6 replies
Ruji2018252
Mar 26, 2025
jasperE3
2 hours ago
Modular NT
oVlad   3
N 2 hours ago by EVKV
Source: Romania JBMO TST 2024 Day 1 P1
Find all the positive integers $a{}$ and $b{}$ such that $(7^a-5^b)/8$ is a prime number.

Cosmin Manea and Dragoș Petrică
3 replies
oVlad
Jul 31, 2024
EVKV
2 hours ago
a