G
Topic
First Poster
Last Poster
f((x XOR f(y)) + y) = (f(x) XOR y) + y
the_universe6626   3
N an hour ago by jasperE3
Source: Janson MO 5 P4
Find all functions $f:\mathbb{Z}_{\ge0}\rightarrow\mathbb{Z}_{\ge0}$ such that
\[f((x\oplus f(y))+y)=(f(x)\oplus y)+y\]Note: $\oplus$ denotes the bitwise XOR operation. For example, $1001_2 \oplus 101_2 = 1100_2$.

(Proposed by ja.)
3 replies
the_universe6626
Feb 21, 2025
jasperE3
an hour ago
2024 8's
Marius_Avion_De_Vanatoare   3
N an hour ago by EVKV
Source: Moldova JTST 2024 P2
Prove that the number $ \underbrace{88\dots8}_\text{2024\; \textrm{times}}$ is divisible by 2024.
3 replies
Marius_Avion_De_Vanatoare
Jun 10, 2024
EVKV
an hour ago
pretty well known
dotscom26   0
an hour ago
Let $\triangle ABC$ be a scalene triangle such that $\Omega$ is its incircle. $AB$ is tangent to $\Omega$ at $D$. A point $E$ ($E \notin \Omega$) is located on $BC$.

Let $\omega_1$, $\omega_2$, and $\omega_3$ be the incircles of the triangles $BED$, $ADE$, and $AEC$, respectively.

Show that the common tangent to $\omega_1$ and $\omega_3$ is also tangent to $\omega_2$.

0 replies
dotscom26
an hour ago
0 replies
Thanks u!
Ruji2018252   6
N an hour ago by jasperE3
Find all $f:\mathbb{R}\to\mathbb{R}$ and
\[ f(x+y)+f(x^2+f(y))=f(f(x))^2+f(x)+f(y)+y,\forall x,y\in\mathbb{R}\]
6 replies
Ruji2018252
Mar 26, 2025
jasperE3
an hour ago
Modular NT
oVlad   3
N an hour ago by EVKV
Source: Romania JBMO TST 2024 Day 1 P1
Find all the positive integers $a{}$ and $b{}$ such that $(7^a-5^b)/8$ is a prime number.

Cosmin Manea and Dragoș Petrică
3 replies
oVlad
Jul 31, 2024
EVKV
an hour ago
Ratio conditions; prove angle XPA = angle AQY
MellowMelon   15
N an hour ago by cj13609517288
Source: USA TSTST 2011/2012 P2
Two circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. Line $\ell$ is tangent to $\omega_1$ at $P$ and to $\omega_2$ at $Q$ so that $A$ is closer to $\ell$ than $B$. Let $X$ and $Y$ be points on major arcs $\overarc{PA}$ (on $\omega_1$) and $AQ$ (on $\omega_2$), respectively, such that $AX/PX = AY/QY = c$. Extend segments $PA$ and $QA$ through $A$ to $R$ and $S$, respectively, such that $AR = AS = c\cdot PQ$. Given that the circumcenter of triangle $ARS$ lies on line $XY$, prove that $\angle XPA = \angle AQY$.
15 replies
MellowMelon
Jul 26, 2011
cj13609517288
an hour ago
IMO 2017 Problem 1
cjquines0   154
N 2 hours ago by blueprimes
Source: IMO 2017 Problem 1
For each integer $a_0 > 1$, define the sequence $a_0, a_1, a_2, \ldots$ for $n \geq 0$ as
$$a_{n+1} = 
\begin{cases}
\sqrt{a_n} & \text{if } \sqrt{a_n} \text{ is an integer,} \\
a_n + 3 & \text{otherwise.}
\end{cases}
$$Determine all values of $a_0$ such that there exists a number $A$ such that $a_n = A$ for infinitely many values of $n$.

Proposed by Stephan Wagner, South Africa
154 replies
cjquines0
Jul 18, 2017
blueprimes
2 hours ago
IMO 2018 Problem 5
orthocentre   76
N 2 hours ago by Maximilian113
Source: IMO 2018
Let $a_1$, $a_2$, $\ldots$ be an infinite sequence of positive integers. Suppose that there is an integer $N > 1$ such that, for each $n \geq N$, the number
$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \cdots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}$$is an integer. Prove that there is a positive integer $M$ such that $a_m = a_{m+1}$ for all $m \geq M$.

Proposed by Bayarmagnai Gombodorj, Mongolia
76 replies
orthocentre
Jul 10, 2018
Maximilian113
2 hours ago
Junior Balkan Mathematical Olympiad 2024- P3
Lukaluce   13
N 2 hours ago by EVKV
Source: JBMO 2024
Find all triples of positive integers $(x, y, z)$ that satisfy the equation

$$2020^x + 2^y = 2024^z.$$
Proposed by Ognjen Tešić, Serbia
13 replies
Lukaluce
Jun 27, 2024
EVKV
2 hours ago
Geometry :3c
popop614   2
N 2 hours ago by Ianis
Source: MINE :<
Quadrilateral $ABCD$ has an incenter $I$ Suppose $AB > BC$. Let $M$ be the midpoint of $AC$. Suppose that $MI \perp BI$. $DI$ meets $(BDM)$ again at point $T$. Let points $P$ and $Q$ be such that $T$ is the midpoint of $MP$ and $I$ is the midpoint of $MQ$. Point $S$ lies on the plane such that $AMSQ$ is a parallelogram, and suppose the angle bisectors of $MCQ$ and $MSQ$ concur on $IM$.

The angle bisectors of $\angle PAQ$ and $\angle PCQ$ meet $PQ$ at $X$ and $Y$. Prove that $PX = QY$.
2 replies
popop614
3 hours ago
Ianis
2 hours ago
a