We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
Hard limits
Snoop76   2
N an hour ago by maths_enthusiast_0001
$a_n$ and $b_n$ satisfies the following recursion formulas: $a_{0}=1, $ $b_{0}=1$, $ a_{n+1}=a_{n}+b_{n}$$ $ and $ $$ b_{n+1}=(2n+3)b_{n}+a_{n}$. Find $ \lim_{n \to \infty} \frac{a_n}{(2n-1)!!}$ $ $ and $ $ $\lim_{n \to \infty} \frac{b_n}{(2n+1)!!}.$
2 replies
Snoop76
Mar 25, 2025
maths_enthusiast_0001
an hour ago
A number theory about divisors which no one fully solved at the contest
nAalniaOMliO   21
N an hour ago by nAalniaOMliO
Source: Belarusian national olympiad 2024
Let's call a pair of positive integers $(k,n)$ interesting if $n$ is composite and for every divisor $d<n$ of $n$ at least one of $d-k$ and $d+k$ is also a divisor of $n$
Find the number of interesting pairs $(k,n)$ with $k \leq 100$
M. Karpuk
21 replies
nAalniaOMliO
Jul 24, 2024
nAalniaOMliO
an hour ago
2025 Caucasus MO Seniors P2
BR1F1SZ   3
N 2 hours ago by X.Luser
Source: Caucasus MO
Let $ABC$ be a triangle, and let $B_1$ and $B_2$ be points on segment $AC$ symmetric with respect to the midpoint of $AC$. Let $\gamma_A$ denote the circle passing through $B_1$ and tangent to line $AB$ at $A$. Similarly, let $\gamma_C$ denote the circle passing through $B_1$ and tangent to line $BC$ at $C$. Let the circles $\gamma_A$ and $\gamma_C$ intersect again at point $B'$ ($B' \neq B_1$). Prove that $\angle ABB' = \angle CBB_2$.
3 replies
BR1F1SZ
Mar 26, 2025
X.Luser
2 hours ago
IMO Shortlist 2010 - Problem G1
Amir Hossein   130
N 2 hours ago by LeYohan
Let $ABC$ be an acute triangle with $D, E, F$ the feet of the altitudes lying on $BC, CA, AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P.$ The lines $BP$ and $DF$ meet at point $Q.$ Prove that $AP = AQ.$

Proposed by Christopher Bradley, United Kingdom
130 replies
Amir Hossein
Jul 17, 2011
LeYohan
2 hours ago
CGMO6: Airline companies and cities
v_Enhance   13
N 2 hours ago by Marcus_Zhang
Source: 2012 China Girl's Mathematical Olympiad
There are $n$ cities, $2$ airline companies in a country. Between any two cities, there is exactly one $2$-way flight connecting them which is operated by one of the two companies. A female mathematician plans a travel route, so that it starts and ends at the same city, passes through at least two other cities, and each city in the route is visited once. She finds out that wherever she starts and whatever route she chooses, she must take flights of both companies. Find the maximum value of $n$.
13 replies
v_Enhance
Aug 13, 2012
Marcus_Zhang
2 hours ago
nice problem
hanzo.ei   0
2 hours ago
Source: I forgot
Let triangle $ABC$ be inscribed in the circumcircle $(O)$ and circumscribed about the incircle $(I)$, with $AB < AC$. The incircle $(I)$ touches the sides $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. A line through $I$, perpendicular to $AI$, intersects $BC$, $CA$, and $AB$ at $X$, $Y$, and $Z$, respectively. The line $AI$ meets $(O)$ at $M$ (distinct from $A$). The circumcircle of triangle $AYZ$ intersects $(O)$ at $N$ (distinct from $A$). Let $P$ be the midpoint of the arc $BAC$ of $(O)$. The line $AI$ cuts segments $DF$ and $DE$ at $K$ and $L$, respectively, and the tangents to the circle $(DKL)$ at $K$ and $L$ intersect at $T$. Prove that $AT \perp BC$.
0 replies
hanzo.ei
2 hours ago
0 replies
Find a given number of divisors of ab
proglote   9
N 2 hours ago by zuat.e
Source: Brazil MO 2013, problem #2
Arnaldo and Bernaldo play the following game: given a fixed finite set of positive integers $A$ known by both players, Arnaldo picks a number $a \in A$ but doesn't tell it to anyone. Bernaldo thens pick an arbitrary positive integer $b$ (not necessarily in $A$). Then Arnaldo tells the number of divisors of $ab$. Show that Bernaldo can choose $b$ in a way that he can find out the number $a$ chosen by Arnaldo.
9 replies
proglote
Oct 24, 2013
zuat.e
2 hours ago
2025 TST 22
EthanWYX2009   1
N 3 hours ago by hukilau17
Source: 2025 TST 22
Let \( A \) be a set of 2025 positive real numbers. For a subset \( T \subseteq A \), define \( M_T \) as the median of \( T \) when all elements of \( T \) are arranged in increasing order, with the convention that \( M_\emptyset = 0 \). Define
\[
P(A) = \sum_{\substack{T \subseteq A \\ |T| \text{ odd}}} M_T, \quad Q(A) = \sum_{\substack{T \subseteq A \\ |T| \text{ even}}} M_T.
\]Find the smallest real number \( C \) such that for any set \( A \) of 2025 positive real numbers, the following inequality holds:
\[
P(A) - Q(A) \leq C \cdot \max(A),
\]where \(\max(A)\) denotes the largest element in \( A \).
1 reply
EthanWYX2009
5 hours ago
hukilau17
3 hours ago
Deriving Van der Waerden Theorem
Didier2   0
3 hours ago
Source: Khamovniki 2023-2024 (group 10-1)
Suppose we have already proved that for any coloring of $\Large \mathbb{N}$ in $r$ colors, there exists an arithmetic progression of size $k$. How can we derive Van der Waerden's theorem for $W(r, k)$ from this?
0 replies
Didier2
3 hours ago
0 replies
Not so classic orthocenter problem
m4thbl3nd3r   6
N 3 hours ago by maths_enthusiast_0001
Source: own?
Let $O$ be circumcenter of a non-isosceles triangle $ABC$ and $H$ be a point in the interior of $\triangle ABC$. Let $E,F$ be foots of perpendicular lines from $H$ to $AC,AB$. Suppose that $BCEF$ is cyclic and $M$ is the circumcenter of $BCEF$, $HM\cap AB=K,AO\cap BE=T$. Prove that $KT$ bisects $EF$
6 replies
m4thbl3nd3r
Yesterday at 4:59 PM
maths_enthusiast_0001
3 hours ago
Triangle determined by three Simson lines
Strobenz   1
N Oct 19, 2018 by brokendiamond
Let $ABC$ be a triangle and let $P, Q, R$ be three points lying on the circumcircle of $ABC$. Prove that if the three Simson lines determined by $P, Q$ and $R$ intersect at $X, Y, Z$, then the triangle $XYZ$ is similar to the triangle $PQR$.

I've looked into this problem since forever and I just have no idea how to prove it! Any help would really be appreciated!
1 reply
Strobenz
Nov 23, 2015
brokendiamond
Oct 19, 2018
Triangle determined by three Simson lines
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Strobenz
1 post
#1 • 1 Y
Y by Adventure10
Let $ABC$ be a triangle and let $P, Q, R$ be three points lying on the circumcircle of $ABC$. Prove that if the three Simson lines determined by $P, Q$ and $R$ intersect at $X, Y, Z$, then the triangle $XYZ$ is similar to the triangle $PQR$.

I've looked into this problem since forever and I just have no idea how to prove it! Any help would really be appreciated!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
brokendiamond
347 posts
#2 • 2 Y
Y by Adventure10, Mango247
Very easy by angle chasing
Z K Y
N Quick Reply
G
H
=
a