Difference between revisions of "2006 AMC 12A Problems/Problem 12"
Armalite46 (talk | contribs) m (→Problem) |
|||
Line 1: | Line 1: | ||
− | {{duplicate|[[2006 AMC 12A Problems| | + | {{duplicate|[[2006 AMC 12A Problems|2006 AMC 12A #12]] and [[2006 AMC 10A Problems/Problem 14|2006 AMC 10A #14]]}} |
== Problem == | == Problem == | ||
A number of linked rings, each 1 cm thick, are hanging on a peg. The top ring has an outside [[diameter]] of 20 cm. The outside diameter of each of the outer rings is 1 cm less than that of the ring above it. The bottom ring has an outside diameter of 3 cm. What is the [[distance]], in cm, from the top of the top ring to the bottom of the bottom ring? | A number of linked rings, each 1 cm thick, are hanging on a peg. The top ring has an outside [[diameter]] of 20 cm. The outside diameter of each of the outer rings is 1 cm less than that of the ring above it. The bottom ring has an outside diameter of 3 cm. What is the [[distance]], in cm, from the top of the top ring to the bottom of the bottom ring? |
Revision as of 19:14, 27 June 2019
- The following problem is from both the 2006 AMC 12A #12 and 2006 AMC 10A #14, so both problems redirect to this page.
Problem
A number of linked rings, each 1 cm thick, are hanging on a peg. The top ring has an outside diameter of 20 cm. The outside diameter of each of the outer rings is 1 cm less than that of the ring above it. The bottom ring has an outside diameter of 3 cm. What is the distance, in cm, from the top of the top ring to the bottom of the bottom ring?
Solutions
Solution 1
The inside diameters of the rings are the positive integers from 1 to 18. The total distance needed is the sum of these values plus 2 for the top of the first ring and the bottom of the last ring. Using the formula for the sum of an arithmetic series, the answer is .
Solution 2
Alternatively, the sum of the consecutive integers from 3 to 20 is . However, the 17 intersections between the rings must be subtracted, and we also get .
See Also
2006 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2006 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.