Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i A Letter to MSM
Arr0w   23
N Sep 19, 2022 by scannose
Greetings.

I have seen many posts talking about commonly asked questions, such as finding the value of $0^0$, $\frac{1}{0}$,$\frac{0}{0}$, $\frac{\infty}{\infty}$, why $0.999...=1$ or even expressions of those terms combined as if that would make them defined. I have made this post to answer these questions once and for all, and I politely ask everyone to link this post to threads that are talking about this issue.
[list]
[*]Firstly, the case of $0^0$. It is usually regarded that $0^0=1$, not because this works numerically but because it is convenient to define it this way. You will see the convenience of defining other undefined things later on in this post.

[*]What about $\frac{\infty}{\infty}$? The issue here is that $\infty$ isn't even rigorously defined in this expression. What exactly do we mean by $\infty$? Unless the example in question is put in context in a formal manner, then we say that $\frac{\infty}{\infty}$ is meaningless.

[*]What about $\frac{1}{0}$? Suppose that $x=\frac{1}{0}$. Then we would have $x\cdot 0=0=1$, absurd. A more rigorous treatment of the idea is that $\lim_{x\to0}\frac{1}{x}$ does not exist in the first place, although you will see why in a calculus course. So the point is that $\frac{1}{0}$ is undefined.

[*]What about if $0.99999...=1$? An article from brilliant has a good explanation. Alternatively, you can just use a geometric series. Notice that
\begin{align*}
\sum_{n=1}^{\infty} \frac{9}{10^n}&=9\sum_{n=1}^{\infty}\frac{1}{10^n}=9\sum_{n=1}^{\infty}\biggr(\frac{1}{10}\biggr)^n=9\biggr(\frac{\frac{1}{10}}{1-\frac{1}{10}}\biggr)=9\biggr(\frac{\frac{1}{10}}{\frac{9}{10}}\biggr)=9\biggr(\frac{1}{9}\biggr)=\boxed{1}
\end{align*}
[*]What about $\frac{0}{0}$? Usually this is considered to be an indeterminate form, but I would also wager that this is also undefined.
[/list]
Hopefully all of these issues and their corollaries are finally put to rest. Cheers.

2nd EDIT (6/14/22): Since I originally posted this, it has since blown up so I will try to add additional information per the request of users in the thread below.

INDETERMINATE VS UNDEFINED

What makes something indeterminate? As you can see above, there are many things that are indeterminate. While definitions might vary slightly, it is the consensus that the following definition holds: A mathematical expression is be said to be indeterminate if it is not definitively or precisely determined. So how does this make, say, something like $0/0$ indeterminate? In analysis (the theory behind calculus and beyond), limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits. However, if the expression obtained after this substitution does not provide sufficient information to determine the original limit, then the expression is called an indeterminate form. For example, we could say that $0/0$ is an indeterminate form.

But we need to more specific, this is still ambiguous. An indeterminate form is a mathematical expression involving at most two of $0$, $1$ or $\infty$, obtained by applying the algebraic limit theorem (a theorem in analysis, look this up for details) in the process of attempting to determine a limit, which fails to restrict that limit to one specific value or infinity, and thus does not determine the limit being calculated. This is why it is called indeterminate. Some examples of indeterminate forms are
\[0/0, \infty/\infty, \infty-\infty, \infty \times 0\]etc etc. So what makes something undefined? In the broader scope, something being undefined refers to an expression which is not assigned an interpretation or a value. A function is said to be undefined for points outside its domain. For example, the function $f:\mathbb{R}^{+}\cup\{0\}\rightarrow\mathbb{R}$ given by the mapping $x\mapsto \sqrt{x}$ is undefined for $x<0$. On the other hand, $1/0$ is undefined because dividing by $0$ is not defined in arithmetic by definition. In other words, something is undefined when it is not defined in some mathematical context.

WHEN THE WATERS GET MUDDIED

So with this notion of indeterminate and undefined, things get convoluted. First of all, just because something is indeterminate does not mean it is not undefined. For example $0/0$ is considered both indeterminate and undefined (but in the context of a limit then it is considered in indeterminate form). Additionally, this notion of something being undefined also means that we can define it in some way. To rephrase, this means that technically, we can make something that is undefined to something that is defined as long as we define it. I'll show you what I mean.

One example of making something undefined into something defined is the extended real number line, which we define as
\[\overline{\mathbb{R}}=\mathbb{R}\cup \{-\infty,+\infty\}.\]So instead of treating infinity as an idea, we define infinity (positively and negatively, mind you) as actual numbers in the reals. The advantage of doing this is for two reasons. The first is because we can turn this thing into a totally ordered set. Specifically, we can let $-\infty\le a\le \infty$ for each $a\in\overline{\mathbb{R}}$ which means that via this order topology each subset has an infimum and supremum and $\overline{\mathbb{R}}$ is therefore compact. While this is nice from an analytic standpoint, extending the reals in this way can allow for interesting arithmetic! In $\overline{\mathbb{R}}$ it is perfectly OK to say that,
\begin{align*}
a + \infty = \infty + a & = \infty, & a & \neq -\infty \\
a - \infty = -\infty + a & = -\infty, & a & \neq \infty \\
a \cdot (\pm\infty) = \pm\infty \cdot a & = \pm\infty, & a & \in (0, +\infty] \\
a \cdot (\pm\infty) = \pm\infty \cdot a & = \mp\infty, & a & \in [-\infty, 0) \\
\frac{a}{\pm\infty} & = 0, & a & \in \mathbb{R} \\
\frac{\pm\infty}{a} & = \pm\infty, & a & \in (0, +\infty) \\
\frac{\pm\infty}{a} & = \mp\infty, & a & \in (-\infty, 0).
\end{align*}So addition, multiplication, and division are all defined nicely. However, notice that we have some indeterminate forms here which are also undefined,
\[\infty-\infty,\frac{\pm\infty}{\pm\infty},\frac{\pm\infty}{0},0\cdot \pm\infty.\]So while we define certain things, we also left others undefined/indeterminate in the process! However, in the context of measure theory it is common to define $\infty \times 0=0$ as greenturtle3141 noted below. I encourage to reread what he wrote, it's great stuff! As you may notice, though, dividing by $0$ is undefined still! Is there a place where it isn't? Kind of. To do this, we can extend the complex numbers! More formally, we can define this extension as
\[\mathbb{C}^*=\mathbb{C}\cup\{\tilde{\infty}\}\]which we call the Riemann Sphere (it actually forms a sphere, pretty cool right?). As a note, $\tilde{\infty}$ means complex infinity, since we are in the complex plane now. Here's the catch: division by $0$ is allowed here! In fact, we have
\[\frac{z}{0}=\tilde{\infty},\frac{z}{\tilde{\infty}}=0.\]where $\tilde{\infty}/\tilde{\infty}$ and $0/0$ are left undefined. We also have
\begin{align*}
z+\tilde{\infty}=\tilde{\infty}, \forall z\ne -\infty\\
z\times \tilde{\infty}=\tilde{\infty}, \forall z\ne 0
\end{align*}Furthermore, we actually have some nice properties with multiplication that we didn't have before. In $\mathbb{C}^*$ it holds that
\[\tilde{\infty}\times \tilde{\infty}=\tilde{\infty}\]but $\tilde{\infty}-\tilde{\infty}$ and $0\times \tilde{\infty}$ are left as undefined (unless there is an explicit need to change that somehow). One could define the projectively extended reals as we did with $\mathbb{C}^*$, by defining them as
\[{\widehat {\mathbb {R} }}=\mathbb {R} \cup \{\infty \}.\]They behave in a similar way to the Riemann Sphere, with division by $0$ also being allowed with the same indeterminate forms (in addition to some other ones).
23 replies
Arr0w
Feb 11, 2022
scannose
Sep 19, 2022
k i Marathon Threads
LauraZed   0
Jul 2, 2019
Due to excessive spam and inappropriate posts, we have locked the Prealgebra and Beginning Algebra threads.

We will either unlock these threads once we've cleaned them up or start new ones, but for now, do not start new marathon threads for these subjects. Any new marathon threads started while this announcement is up will be immediately deleted.
0 replies
LauraZed
Jul 2, 2019
0 replies
k i Basic Forum Rules and Info (Read before posting)
jellymoop   368
N May 16, 2018 by harry1234
f (Reminder: Do not post Alcumus or class homework questions on this forum. Instructions below.) f
Welcome to the Middle School Math Forum! Please take a moment to familiarize yourself with the rules.

Overview:
[list]
[*] When you're posting a new topic with a math problem, give the topic a detailed title that includes the subject of the problem (not just "easy problem" or "nice problem")
[*] Stay on topic and be courteous.
[*] Hide solutions!
[*] If you see an inappropriate post in this forum, simply report the post and a moderator will deal with it. Don't make your own post telling people they're not following the rules - that usually just makes the issue worse.
[*] When you post a question that you need help solving, post what you've attempted so far and not just the question. We are here to learn from each other, not to do your homework. :P
[*] Avoid making posts just to thank someone - you can use the upvote function instead
[*] Don't make a new reply just to repeat yourself or comment on the quality of others' posts; instead, post when you have a new insight or question. You can also edit your post if it's the most recent and you want to add more information.
[*] Avoid bumping old posts.
[*] Use GameBot to post alcumus questions.
[*] If you need general MATHCOUNTS/math competition advice, check out the threads below.
[*] Don't post other users' real names.
[*] Advertisements are not allowed. You can advertise your forum on your profile with a link, on your blog, and on user-created forums that permit forum advertisements.
[/list]

Here are links to more detailed versions of the rules. These are from the older forums, so you can overlook "Classroom math/Competition math only" instructions.
Posting Guidelines
Update on Basic Forum Rules
What belongs on this forum?
How do I write a thorough solution?
How do I get a problem on the contest page?
How do I study for mathcounts?
Mathcounts FAQ and resources
Mathcounts and how to learn

As always, if you have any questions, you can PM me or any of the other Middle School Moderators. Once again, if you see spam, it would help a lot if you filed a report instead of responding :)

Marathons!
Relays might be a better way to describe it, but these threads definitely go the distance! One person starts off by posting a problem, and the next person comes up with a solution and a new problem for another user to solve. Here's some of the frequently active marathons running in this forum:
[list][*]Algebra
[*]Prealgebra
[*]Proofs
[*]Factoring
[*]Geometry
[*]Counting & Probability
[*]Number Theory[/list]
Some of these haven't received attention in a while, but these are the main ones for their respective subjects. Rather than starting a new marathon, please give the existing ones a shot first.

You can also view marathons via the Marathon tag.

Think this list is incomplete or needs changes? Let the mods know and we'll take a look.
368 replies
jellymoop
May 8, 2015
harry1234
May 16, 2018
Croatian mathematical olympiad, day 1, problem 2
Matematika   6
N 3 minutes ago by Cqy00000000
There were finitely many persons at a party among whom some were friends. Among any $4$ of them there were either $3$ who were all friends among each other or $3$ who weren't friend with each other. Prove that you can separate all the people at the party in two groups in such a way that in the first group everyone is friends with each other and that all the people in the second group are not friends to anyone else in second group. (Friendship is a mutual relation).
6 replies
Matematika
Apr 10, 2011
Cqy00000000
3 minutes ago
Game
Pascual2005   27
N an hour ago by HamstPan38825
Source: Colombia TST, IMO ShortList 2004, combinatorics problem 5
$A$ and $B$ play a game, given an integer $N$, $A$ writes down $1$ first, then every player sees the last number written and if it is $n$ then in his turn he writes $n+1$ or $2n$, but his number cannot be bigger than $N$. The player who writes $N$ wins. For which values of $N$ does $B$ win?

Proposed by A. Slinko & S. Marshall, New Zealand
27 replies
Pascual2005
Jun 7, 2005
HamstPan38825
an hour ago
MAP Goals
Antoinette14   7
N an hour ago by Rice_Farmer
What's yall's MAP goals for this spring?
Mine's a 300 (trying to beat my brother's record) but since I'm at a 285 rn, 290+ is more reasonable.
7 replies
Antoinette14
Yesterday at 11:59 PM
Rice_Farmer
an hour ago
Warning!
VivaanKam   25
N 2 hours ago by jb2015007
This problem will try to trick you! :!:

25 replies
VivaanKam
May 5, 2025
jb2015007
2 hours ago
Lines concur on bisector of BAC
Invertibility   2
N 3 hours ago by NO_SQUARES
Source: Slovenia 2025 TST 3 P2
Let $\Omega$ be the circumcircle of a scalene triangle $ABC$. Let $\omega$ be a circle internally tangent to $\Omega$ in $A$. Tangents from $B$ touch $\omega$ in $P$ and $Q$, such that $P$ lies in the interior of $\triangle{}ABC$. Similarly, tangents from $C$ touch $\omega$ in $R$ and $S$, such that $R$ lies in the interior of $\triangle{}ABC$.

Prove that $PS$ and $QR$ concur on the bisector of $\angle{}BAC$.
2 replies
Invertibility
3 hours ago
NO_SQUARES
3 hours ago
Why is the old one deleted?
EeEeRUT   16
N 3 hours ago by ravengsd
Source: EGMO 2025 P1
For a positive integer $N$, let $c_1 < c_2 < \cdots < c_m$ be all positive integers smaller than $N$ that are coprime to $N$. Find all $N \geqslant 3$ such that $$\gcd( N, c_i + c_{i+1}) \neq 1$$for all $1 \leqslant i \leqslant m-1$

Here $\gcd(a, b)$ is the largest positive integer that divides both $a$ and $b$. Integers $a$ and $b$ are coprime if $\gcd(a, b) = 1$.

Proposed by Paulius Aleknavičius, Lithuania
16 replies
EeEeRUT
Apr 16, 2025
ravengsd
3 hours ago
Renu would take $15$ days working $4$ hours per day to complete a certain task w
Vulch   3
N 4 hours ago by Capybara7017
Renu would take $15$ days working $4$ hours per day to complete a certain task whereas Seema would take $8$ days working $5$ hours per day to complete the same task. They decide to work together to complete this task. Seema agrees to work for double the number of hours per day as Renu, while Renu agrees to work for double the number of days as Seema. If Renu works $2$ hours per day, then the number of days Seema will work, is
3 replies
Vulch
Today at 1:44 PM
Capybara7017
4 hours ago
The best math formulas?
anticodon   18
N 4 hours ago by anticodon
my math teacher recently offhandedly mentioned in class that "the law of sines is probably in the top 10 of math formulas". This inspired me to make a top 10 list to see if he's right (imo he actually is...)

so I decided, it would be interesting to hear others' opinions on the top 10 and we can compile an overall list.

Attached=my list (sorry if you can't read my handwriting, I was too lazy to do latex, and my normal pencil handwriting looks better)

the formulas
18 replies
anticodon
Yesterday at 11:00 PM
anticodon
4 hours ago
Mathcounts Stories
Eyed   180
N 4 hours ago by Capybara7017
Because Mathcounts season is over, and I think we are free to discuss the problems, I think we can post our stories without fear of sharing information that is not allowed.
Hopefully this does not become too spammy, and I hope to see good quality stories. For example, I am not looking to see stories like this, or this.
Instead I would like to have higher quality stories.
Mods if this is not ok, then feel free to lock, I just hope we can all share our reflections on this contest, since mathcounts is now over.
Anyway, here's mine (At the request of Stormersyle)

old locked mathcounts stories thread
180 replies
Eyed
Jun 3, 2019
Capybara7017
4 hours ago
9 zeroes!.
ericheathclifffry   9
N 4 hours ago by Capybara7017
i personally have no idea
9 replies
ericheathclifffry
May 5, 2025
Capybara7017
4 hours ago
24 Game Strategies
Ljviolin11   1
N 4 hours ago by Capybara7017
Hello everybody! Probably most of you have heard of Game 24: You are given 4 numbers and you must add, subtract, multiply, and divide these numbers to achieve 24.
For example: 11, 9, 4, 7.
Solution
I am participating in a Game 24 contest soon. I have been using this online simulator to practie: https://www.4nums.com/. Sometimes, I can get the answer really quickly, but other times, it takes me a couple of minutes. Are there any general strategies that you have used for this game that you would recommend? Thank you very much!
1 reply
Ljviolin11
Today at 2:27 PM
Capybara7017
4 hours ago
prime numbers
wpdnjs   118
N 5 hours ago by Capybara7017
does anyone know how to quickly identify prime numbers?

thanks.
118 replies
wpdnjs
Oct 2, 2024
Capybara7017
5 hours ago
Calculate the distance AD
MTA_2024   0
Today at 3:50 PM
A semi-circle is inscribed in a quadrilateral $ABCD$. The center $O$ of the semi-circle is the midpoint of segment $AD$. We have $AB=9$ and $CD=16$.
Calculate the distance $AD$.
0 replies
MTA_2024
Today at 3:50 PM
0 replies
9 What is the best way to learn math???
lovematch13   93
N Today at 3:04 PM by ReticulatedPython
On the contrary, I'm also gonna try to send this to school admins. PLEASE DO NOT TROLL!!!!
93 replies
lovematch13
May 22, 2023
ReticulatedPython
Today at 3:04 PM
$n$ with $2000$ divisors divides $2^n+1$ (IMO 2000)
Valentin Vornicu   66
N Apr 25, 2025 by Ilikeminecraft
Source: IMO 2000, Problem 5, IMO Shortlist 2000, Problem N3
Does there exist a positive integer $ n$ such that $ n$ has exactly 2000 prime divisors and $ n$ divides $ 2^n + 1$?
66 replies
Valentin Vornicu
Oct 24, 2005
Ilikeminecraft
Apr 25, 2025
$n$ with $2000$ divisors divides $2^n+1$ (IMO 2000)
G H J
G H BBookmark kLocked kLocked NReply
Source: IMO 2000, Problem 5, IMO Shortlist 2000, Problem N3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Valentin Vornicu
7301 posts
#1 • 16 Y
Y by Amir Hossein, Davi-8191, MarkBcc168, Understandingmathematics, itslumi, Adventure10, megarnie, RedFlame2112, Leo890, clevereagle, Mango247, cookie130, Dansman2838, PikaPika999, and 2 other users
Does there exist a positive integer $ n$ such that $ n$ has exactly 2000 prime divisors and $ n$ divides $ 2^n + 1$?
This post has been edited 1 time. Last edited by Amir Hossein, Mar 21, 2016, 7:33 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
grobber
7849 posts
#2 • 15 Y
Y by viperstrike, laegolas, Wizard_32, to_chicken, Adventure10, DCMaths, Mango247, cookie130, MS_asdfgzxcvb, PikaPika999, and 5 other users
For any $k\ge 1$ there is such an $n$ with exactly $k$ prime factors.

For $k=1,\ n=3^t$ works for every $t\ge 1$. Take $t$ s.t. for $n_1=3^t,\ 2^{n_1}+1$ has a prime factor $p_2$ larger than $3$. Now take $n_2=n_1p_2$. Then $n_2|2^{n_1}+1|2^{n_2}+1$, and $2^{p_2}+1$ has a prime factor $p_3\not|n_2$. This is because $(2^{n_1}+1,2^{p_2}+1)=3,\ p_2\not|2^{p_2}+1$, and $2^{p_2}+1$ cannot be a power of $3$, since $p_2>3$ (I'm using the well known and easy to prove fact that the only positive integer solution $(a,b),a>1$ to $3^a=2^b+1$ is $(a,b)=(2,3)$). Then take $n_3=n_2p_3$. Just like above, we deduce that $2^{p_3}+1$ has a prime factor $p_4$ which is coprime to $n_3$, and take $n_4=n_3p_4$, and so on. $n_k$ will have exactly $k$ prime factors and will satisfy $n_k|2^{n_k}+1$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pluricomplex
390 posts
#3 • 3 Y
Y by Adventure10, Mango247, cookie130
Valentin Vornicu wrote:
Does there exist a positive integer $n$ such that $n$ has exactly 2000 prime divisors and $n$ divides $2^n + 1$?

You can find my paper for a general problem of this problem in This file
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Philip_Leszczynski
327 posts
#4 • 3 Y
Y by Adventure10, Mango247, cookie130
Let $N=2^n+1$. We will assume for the sake of contradiction that $n|N$.

$2^n+1 \equiv 0$ (mod $n$) $\Rightarrow 2^n \equiv -1$ (mod $n$). So 2 does not divide $n$, and so $n$ is odd.

Select an arbitrary prime factor of $n$ and call it $p$. Let's represent $n$ in the form $p^am$, where $m$ is not divisible by $p$.

Note that $p$ and $m$ are both odd since $n$ is odd. By repeated applications of Fermat's Little Theorem:

$N = 2^n+1 = 2^{p^am} + 1 = (2^{p^{a-1}m})^p + 1 \equiv 2^{p^{a-1}m} + 1$ (mod $p$)

Continuing in this manner, and inducting on k from 1 to $a$,

$2^{p^{a-k}m}+1 \equiv (2^{p^{a-k-1}m})^p + 1$ (mod $p$) $\equiv 2^{p^{a-k-1}m} + 1$ (mod $p$)

So we have $N \equiv 2^m+1$ (mod $p$)

Since $p$ is relatively prime to $m$, $N \equiv 1+1$ (mod $p$) $\equiv 2$ (mod $p$)

Since $p$ is odd, $N$ is not divisible by $p$. Hence $N$ is not divisible by $n$. So we have a contradiction, and our original assumption was false, and therefore $N$ is still not divisible by $n$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Philip_Leszczynski
327 posts
#5 • 3 Y
Y by Adventure10, Mango247, cookie130
Hmmm... I made a mistake here somewhere but I do not see it.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Arne
3660 posts
#6 • 4 Y
Y by The_fandangos, Adventure10, Mango247, cookie130
Yes, since there are lots of integers $n$ such that $n$ divides $2^n + 1$, and the statement is true!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Johann Peter Dirichlet
376 posts
#7 • 3 Y
Y by Adventure10, Mango247, cookie130
There exists a pretty beautiful generalization:

"
Let $s, a, b$ positive integers, such that $GCD(a,b) = 1$ and $a+b$ is not a 2-power.
Show that there exists infinitely many $n \in N$ such that

--- $n=p_1^{e_1} \cdot p_2^{e_2} \cdot p_3^{e_3} \cdots p_s^{e_s} \cdot$ is the canonical factoring of $n$.

--- $n|(a^n+b^n)$
"
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
The QuattoMaster 6000
1184 posts
#8 • 3 Y
Y by Adventure10, Mango247, cookie130
Valentin Vornicu wrote:
Does there exist a positive integer $ n$ such that $ n$ has exactly 2000 prime divisors and $ n$ divides $ 2^n + 1$?
Here is a solution that I don't think has been mentioned yet:
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Arquimedes
8 posts
#9 • 3 Y
Y by Adventure10, Mango247, cookie130
For any i,
2^3^i+1
is divisible by
3^i
(the proof is easy with euler`s theorem+induction and maybe with primitive roots (2 is primitive root modulo 3^i for any i)). Hence, for i=1999,
3^1999
has 2000 divisors and it satisfies the asked in the problem.

it is correct??

please , answer me.

bye

sorry for my english.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
L-b
11 posts
#10 • 3 Y
Y by Adventure10, Mango247, cookie130
Well, the point is to find a number which has exactly $ 2000$ prime divisiors, whereas $ 3^{1999}$ has only one ($ 3$).

But it is a very nice thought to look at powers of $ 3$, when the problem considers powers of $ 2$ (vide grobber's solution, which I do not completely understand yet, but it seems very nice and simple)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Binomial-theorem
3982 posts
#11 • 5 Y
Y by JasperL, Anar24, Adventure10, Mango247, cookie130
Solution overkilling with Zsigmondy's
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
v_Enhance
6877 posts
#12 • 18 Y
Y by Binomial-theorem, WL0410, e_plus_pi, Omeredip, Not_real_name, Takeya.O, TheHerculean11, ZHEKSHEN, Quidditch, HamstPan38825, Msn05, samrocksnature, joseph02, aidan0626, Adventure10, Mango247, MarioLuigi8972, cookie130
Answer: Yes.

We say that $n$ is Korean if $n \mid 2^n+1$. First, observe that $n=9$ is Korean. Now, the problem is solved upon the following claim:

Claim: If $n > 3$ is Korean, there exists a prime $p$ not dividing $n$ such that $np$ is Korean too.

Proof. I claim that one can take any primitive prime divisor $p$ of $2^{2n}-1$, which exists by Zsigmondy theorem. Obviously $p \neq 2$. Then:
  • Since $p \nmid 2^{\varphi(n)}-1$ it follows then that $p \nmid n$.
  • Moreover, $p \mid 2^n+1$ since $p \nmid 2^n-1$;
Hence $np \mid 2^{np} + 1$ by Chinese Theorem, since $\gcd(n,p) = 1$. $\blacksquare$

EDIT: The version of the proof I posted four years ago was incorrect. This one should work.
This post has been edited 1 time. Last edited by v_Enhance, May 3, 2017, 1:08 AM
Reason: Wanlin Li pointed out a mistake
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lfetahu
134 posts
#13 • 6 Y
Y by Takeya.O, gghx, Adventure10, Mango247, cookie130, and 1 other user
I feel like it isn't interesting to make any new remark on this problem, but anyway I'm posting my approach too.

If we show that for any positive integer k, there exists a positive integer n with exactly k distinct prime divisors such that n | 2^n + 1, then we are done, since the problem asks us to examine a special case, more exactly k = 2000. Furthermore, we can even show that we can find these n's divisible by a power of 3, which will help us on our proof.

We use induction on k. k = 1, we can choose n(1) = 3, which clearly satisfies the conditions. Assume that k >= 1, and there exists n(k) = 3^t * m, where gcd(3, m) = 1, and m has exactly (k - 1) distinct prime divisors. So, we have n(k) | 2^(n(k)) + 1.
Before generating n(k+1) from n(k), let us look at the number 3n(k), which clearly has k distinct prime divisors. 2^(3n(k)) + 1 = (2^(n(k)) + 1)(2^(2n(k)) - 2^(n(k)) + 1). Since we must have n(k) always odd because of the fact that n(k) = 1 (mod 2), we deduce that 3 | (2^(2n(k)) - 2^(n(k)) + 1), so we have that 3n(k) | 2^(3n(k)) + 1. It is enough to find a prime p, such that p | 2^(3n(k)) + 1 and p doesn't divide (2^(n(k)) + 1), which could guarantee us that p doesn't divide n(k) and consequently, we could generate n(k + 1) = 3n(k)*p, which could clearly work by observing that 2^(3n(k)*p) + 1 = (2^(n(k)) + 1)(2^(2n(k)) - 2^(n(k)) + 1)*A. But, since we can pick up this prime p by Zsigmondy, we are done.

Note that in case of not using Zsigmondy, we can observe that gcd(a^2 - a + 1, a + 1) = gcd(3, a + 1) = 1 if a is not 2 mod 3 and 3 if a = 3k + 2. But if a = 3k + 2, then a^2 - a + 1 is divisible by 3 but not by 9, so we could pick up any prime p that divides (a^2 - a + 1) / 3.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sayantanchakraborty
505 posts
#14 • 3 Y
Y by Adventure10, Mango247, cookie130
Let $n=\prod_{i=1}^{2000}{p_i}$ and wlog let $p_1<p_2<\dots<p_{2000}$.I dscribe a process on how to construct such an $n$.By the problem we have $2^{2n} \equiv 1\pmod{p_1} \Rightarrow ord_{p_1}{2} |2n$ and so by the minimality of $p_1$ we get that $ord_{p_1}=1$ or $ord_{p_1}=2$.In the first case we get $p_1|1$ which is absurd while in the second case we get $p_1|2^2-1=3 \Rightarrow \boxed{p_1=3}$.Similarly it is easy to note that $ord_{p_2}{2}|2n$ and so by the choice of $p_2$ we get $ord_{p_2}{2}|2*3=6$.Clearly there exists such a prime such that $ord_{p_2}{2}=6$(By Zsigmondy!!)In general we have $2^{2n} \equiv 1\pmod{p_k} \Rightarrow ord_{p_k}2|p_1p_2\dots p_{k-1}$.Clearly there exists a prime such that $ord_{p_k}2=p_1p_2\dots p_{k-1}$(Again Zsigmondy!!).So we are done!!!(In fact by this procedure we may fix any number of primes).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
junioragd
314 posts
#15 • 3 Y
Y by Adventure10, Mango247, cookie130
Since $N=3^k$ all satisfay the condition.Now,it is enough to prove that numbers of the form $N=2{}^3{}^k+1$ have infinitely many primes dividing them,but this is easy to prove,since we have for $n<m$ $2{}^3{}^n+1$ divides $2{}^3{}^m+1$ so suppose opposite.Now,we just need to prove that $a+1$ and $a^3+1$ can't have identical sets of primes for $a>2$,and this is true because $GCD(a+1,a^2-a+1)$ is at most $3$ and $a^2-a+1>3$ for $a>2$ so we are done.
Z K Y
G
H
=
a