ka May Highlights and 2025 AoPS Online Class Information
jlacosta0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.
Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.
Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.
Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Intermediate: Grades 8-12
Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Given triangle ABC, it is true that BD = CF where D and F are points in the same half-plane with respect to line BC and it is also known that BD is parallel to AC and CF is parallel to AB. Show that BF, CD and the interior bisector of A are concurrent.
In square , and are points on sides and , respectively, such that . If and , find the area of .
Answer Confirmation
Solution
Let side length of and area of . Since Is a square, is a right angle, and , which means . Since is a right angle, , which means . Since and both contain a right angle and , we can show that through AA postulate. Because they are similar, , and substituting values, we get , so , and . Using pythagorean theorem on , we get . Since we want x^2, we multiply both sides by , so .
Triangle has a right angle at , with and . If and are points
on and , respectively, such that , find the perimeter of quadrilateral . Answer Confirmation
Solution
The perimeter of .
, as given in the question.
, also as a given.
Since AB = 3, BC = 4, and is a right angle, using pythagorean theorem, we can get ., as stated in the question. .
Draw the altitude of from point , and let point be the intersection of said altitude and . both have a right angle and , so through AA Postulate. , so substituting the values, we have , and . Since (CD = DE, as stated in the problem), , and (they were formed by an altitude, and are therefore both right angles), we can show that through HL Theorem. corresponds with , so ., so substituting the values, we have and .
Sipnayan 2019 SHS Orals Semifinal Round B Difficult \#3
qrxz170
Today at 1:30 PM
Problem. Suppose that ,, are positive integers such that . Find all possible values of . Answer. Click to reveal hidden text
7 and 9
Solution. Expanding and cancelling "like" terms, we get
We multiply the entire equation by to rearrange the terms and place the higher-degree terms at the front of the expression in order to have a more recognizable form.
Simplifying the left-hand expression, we get
If , we get
in which there are no real solutions for .
If we either have ,, or , we get something of the form
Since and are the only square factors of , we have .
In this case, the solutions for are and , including all their permutations.
If are all distinct positive integers, there are no solutions.
Problem. Find the maximum value of as x varies over the positive real numbers. Answer. Click to reveal hidden text
216
Solution. Simplifying the equation, we get
Let . We have
We can rewrite the equation into
Then, by grouping terms, we get
Either way works. For the first equation, we can get the maximum at y=3. For the second equation, we can get the maximum at y=2. This happens because each expression reaches a turning point (where the function changes from increasing to decreasing) when the terms in the parentheses equal zero. Both expressions produce the maximum value of .