Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Inequality conjecture
RainbowNeos   0
an hour ago
Show (or deny) that there exists an absolute constant $C>0$ that, for all $n$ and $n$ positive real numbers $x_i ,1\leq i \leq n$, there is
\[\sum_{i=1}^n \frac{x_i^2}{\sum_{j=1}^i x_j}\geq C \ln n\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}\]
0 replies
RainbowNeos
an hour ago
0 replies
inequality 2905
pennypc123456789   0
an hour ago
Consider positive real numbers \( x, y, z \) that satisfy the condition
\[
\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 3.
\]Find the maximum value of the expression
\[
P = \dfrac{yz}{\sqrt[3]{3y^2z^2+ 3x^2y^2z^2+ x^2z^2 + x^2y^2}}
+ \frac{xz}{\sqrt[3]{3x^2z^2 + 3x^2y^2z^2 + x^2y^2 + y^2z^2}}
+ \frac{xy}{\sqrt[3]{3x^2y^2 + 3x^2y^2z^2 +y^2z^2 + x^2z^2}}.
\]
0 replies
1 viewing
pennypc123456789
an hour ago
0 replies
Inspired by m4thbl3nd3r
sqing   3
N an hour ago by sqing
Source: Own
Let $  a, b,c>0,b+c>a$. Prove that$$\sqrt{\frac{a}{b+c-a}}-\frac{2a^2-b^2-c^2}{(a+b)(a+c)}\geq 1$$$$\frac{a}{b+c-a}-\frac{2a^2-b^2-c^2}{(a+b)(a+c)} \geq  \frac{4\sqrt 2}{3}-1$$
3 replies
1 viewing
sqing
Today at 3:43 AM
sqing
an hour ago
Inspired by qrxz17
sqing   7
N an hour ago by sqing
Source: Own
Let $a, b,c>0 ,(a^2+b^2+c^2)^2 - 2(a^4+b^4+c^4) = 27 $. Prove that $$a+b+c\geq 3\sqrt {3}$$
7 replies
1 viewing
sqing
5 hours ago
sqing
an hour ago
Geometry problem
Whatisthepurposeoflife   2
N an hour ago by Whatisthepurposeoflife
Source: Derived from MEMO 2024 I3
Triangle ∆ABC is scalene the circle w that goes through the points A and B intersects AC at E BC at D let the Lines BE and AD intersect at point F. And let the tangents A and B of circle w Intersect at point G.
Prove that C F and G are collinear
2 replies
Whatisthepurposeoflife
Yesterday at 1:45 PM
Whatisthepurposeoflife
an hour ago
A Sequence of +1's and -1's
ike.chen   36
N an hour ago by maromex
Source: ISL 2022/C1
A $\pm 1$-sequence is a sequence of $2022$ numbers $a_1, \ldots, a_{2022},$ each equal to either $+1$ or $-1$. Determine the largest $C$ so that, for any $\pm 1$-sequence, there exists an integer $k$ and indices $1 \le t_1 < \ldots < t_k \le 2022$ so that $t_{i+1} - t_i \le 2$ for all $i$, and $$\left| \sum_{i = 1}^{k} a_{t_i} \right| \ge C.$$
36 replies
ike.chen
Jul 9, 2023
maromex
an hour ago
Basic ideas in junior diophantine equations
Maths_VC   1
N 2 hours ago by grupyorum
Source: Serbia JBMO TST 2025, Problem 3
Determine all positive integers $a, b$ and $c$ such that
$2$ $\cdot$ $10^a + 5^b = 2025^c$
1 reply
Maths_VC
Tuesday at 7:54 PM
grupyorum
2 hours ago
Inspired by qrxz17
sqing   3
N 2 hours ago by sqing
Source: Own
Let $ a,b,c $ be reals such that $ (a^2+b^2)^2 + (b^2+c^2)^2 +(c^2+a^2)^2 = 28 $ and $  (a^2+b^2+c^2)^2 =16. $ Find the value of $ a^2(a^2-1) + b^2(b^2-1)+c^2(c^2-1).$
3 replies
sqing
5 hours ago
sqing
2 hours ago
Hardest in ARO 2008
discredit   30
N 2 hours ago by Phat_23000245
Source: ARO 2008, Problem 11.8
In a chess tournament $ 2n+3$ players take part. Every two play exactly one match. The schedule is such that no two matches are played at the same time, and each player, after taking part in a match, is free in at least $ n$ next (consecutive) matches. Prove that one of the players who play in the opening match will also play in the closing match.
30 replies
discredit
Jun 11, 2008
Phat_23000245
2 hours ago
Find the value
sqing   12
N 2 hours ago by Phat_23000245
Source: 2024 China Fujian High School Mathematics Competition
Let $f(x)=a_6x^6+a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0,$ $a_i\in\{-1,1\} ,i=0,1,2,\cdots,6 $ and $f(2)=-53 .$ Find the value of $f(1).$
12 replies
sqing
Jun 22, 2024
Phat_23000245
2 hours ago
Sequences of real numbers
brian22   92
N 2 hours ago by NicoN9
Source: USAJMO 2015 Problem 1
Given a sequence of real numbers, a move consists of choosing two terms and replacing each with their arithmetic mean. Show that there exists a sequence of 2015 distinct real numbers such that after one initial move is applied to the sequence -- no matter what move -- there is always a way to continue with a finite sequence of moves so as to obtain in the end a constant sequence.
92 replies
brian22
Apr 28, 2015
NicoN9
2 hours ago
Close to JMO, but not close enough
isache   11
N Today at 6:13 AM by LearnMath_105
Im currently a freshman in hs, and i rlly wanna make jmo in sophmore yr. Ive been cooking at in-person competitions recently (ucsd hmc, scmc, smt, mathcounts) but I keep fumbling jmo. this yr i had a 133.5 on 10b and a 9 on aime. How do i get that up by 20 points to a 240?
11 replies
isache
Yesterday at 11:37 PM
LearnMath_105
Today at 6:13 AM
k Bring Back Downvotes
heheman   79
N Today at 5:48 AM by heheman
i would like to start a petition to bring back downvote, it you agree then write "bbd $    $" in threads
79 replies
heheman
Yesterday at 7:21 PM
heheman
Today at 5:48 AM
[TEST RELEASED] OMMC Year 5
DottedCaculator   180
N Today at 4:51 AM by fuzimiao2013
Test portal: https://ommc-test-portal-2025.vercel.app/

Hello to all creative problem solvers,

Do you want to work on a fun, untimed team math competition with amazing questions by MOPpers and IMO & EGMO medalists? $\phantom{You lost the game.}$
Do you want to have a chance to win thousands in cash and raffle prizes (no matter your skill level)?

Check out the fifth annual iteration of the

Online Monmouth Math Competition!

Online Monmouth Math Competition, or OMMC, is a 501c3 accredited nonprofit organization managed by adults, college students, and high schoolers which aims to give talented high school and middle school students an exciting way to develop their skills in mathematics.

Our website: https://www.ommcofficial.org/

This is not a local competition; any student 18 or younger anywhere in the world can attend. We have changed some elements of our contest format, so read carefully and thoroughly. Join our Discord or monitor this thread for updates and test releases.

How hard is it?

We plan to raffle out a TON of prizes over all competitors regardless of performance. So just submit: a few minutes of your time will give you a great chance to win amazing prizes!

How are the problems?

You can check out our past problems and sample problems here:
https://www.ommcofficial.org/sample
https://www.ommcofficial.org/2022-documents
https://www.ommcofficial.org/2023-documents
https://www.ommcofficial.org/ommc-amc

How will the test be held?/How do I sign up?

Solo teams?

Test Policy

Timeline:
Main Round: May 17th - May 24th
Test Portal Released. The Main Round of the contest is held. The Main Round consists of 25 questions that each have a numerical answer. Teams will have the entire time interval to work on the questions. They can submit any time during the interval. Teams are free to edit their submissions before the period ends, even after they submit.

Final Round: May 26th - May 28th
The top placing teams will qualify for this invitational round (5-10 questions). The final round consists of 5-10 proof questions. Teams again will have the entire time interval to work on these questions and can submit their proofs any time during this interval. Teams are free to edit their submissions before the period ends, even after they submit.

Conclusion of Competition: Early June
Solutions will be released, winners announced, and prizes sent out to winners.

Scoring:

Prizes:

I have more questions. Whom do I ask?

We hope for your participation, and good luck!

OMMC staff

OMMC’S 2025 EVENTS ARE SPONSORED BY:

[list]
[*]Nontrivial Fellowship
[*]Citadel
[*]SPARC
[*]Jane Street
[*]And counting!
[/list]
180 replies
DottedCaculator
Apr 26, 2025
fuzimiao2013
Today at 4:51 AM
sum to 2024
pog   25
N Apr 4, 2025 by Apple_maths60
Source: 2024 AMC 10A #4 / 2024 AMC 12A #3
The number $2024$ is written as the sum of not necessarily distinct two-digit numbers. What is the least number of two-digit numbers needed to write this sum?

$\textbf{(A) }20\qquad\textbf{(B) }21\qquad\textbf{(C) }22\qquad\textbf{(D) }23\qquad\textbf{(E) }24$
25 replies
pog
Nov 7, 2024
Apple_maths60
Apr 4, 2025
sum to 2024
G H J
Source: 2024 AMC 10A #4 / 2024 AMC 12A #3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pog
4917 posts
#1
Y by
The number $2024$ is written as the sum of not necessarily distinct two-digit numbers. What is the least number of two-digit numbers needed to write this sum?

$\textbf{(A) }20\qquad\textbf{(B) }21\qquad\textbf{(C) }22\qquad\textbf{(D) }23\qquad\textbf{(E) }24$
This post has been edited 1 time. Last edited by jlacosta, Nov 7, 2024, 5:08 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ConfidentKoala4
611 posts
#2
Y by
B i think iirc
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pog
4917 posts
#3 • 1 Y
Y by ranu540
We want to use as many $99$s as possible. Then $99 \cdot 20 + 44 = 2024$, so our answer is $20 + 1 = \boxed{\textbf{(B) }21}$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bobjoebilly
79 posts
#4 • 1 Y
Y by pog
fairly certain this was also #3 on 2024 AMC 12A
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jonysun
34 posts
#6
Y by
Yeah it's $\fbox{B} \Rightarrow 21$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HonestCat
972 posts
#7
Y by
MAA looked at this and said “yeah, this is harder than p2”
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Sedro
5855 posts
#8
Y by
B confirmed.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
The_Reaperr
43 posts
#9
Y by
Yes it is B
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ElaineGu
388 posts
#10
Y by
Yup B. 99*21>2024
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MathRook7817
749 posts
#11
Y by
ceil(2024/99)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Marcus_Zhang
980 posts
#12
Y by
legit read this one wrong as "2024 is the sum of two not necesarily distinct two-digit numbers"

rest in peace my reading skills
This post has been edited 1 time. Last edited by Marcus_Zhang, Nov 7, 2024, 5:13 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
LostDreams
144 posts
#13
Y by
Notice how it says "not necessarily distinct"
So yea just max out with bunch of 99s and you get B
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
golden_star_123
210 posts
#15
Y by
This one was extremely easy and should have been #1.

This is $\lceil \frac{2024}{99} \rceil$, which is $\boxed{21}$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aryanpadarthi
4995 posts
#16
Y by
this should have been #2 or #1

ez
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SomeonecoolLovesMaths
3307 posts
#17
Y by
oh no I assumed them to be distinct :(
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
wangzrpi
159 posts
#18
Y by
HonestCat wrote:
MAA looked at this and said “yeah, this is harder than p2”

didn't even read p2
B confirmed
this should be an amc8 problem
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
OlympusHero
17020 posts
#19
Y by
May have misbubbled C for this question :(
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
xHypotenuse
787 posts
#20
Y by
OlympusHero wrote:
May have misbubbled C for this question :(

Don't worry I think answer choices and questions were mixed up as an anti-cheat
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MC_ADe
183 posts
#21
Y by
sillied, said A cuz 99x20, forgot to +1 cuz of 44
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
gicyuraok2
1059 posts
#22
Y by
quite a simple problem, just $99*20+44=2024$, but you can easily mess this one up
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
andrewcheng
525 posts
#23
Y by
pog wrote:
The number $2024$ is written as the sum of not necessarily distinct two-digit numbers. What is the least number of two-digit numbers needed to write this sum?

$\textbf{(A) }20\qquad\textbf{(B) }21\qquad\textbf{(C) }22\qquad\textbf{(D) }23\qquad\textbf{(E) }24$

easier than P2 should be moved
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Countmath1
180 posts
#24
Y by
I pigeonholed this one. Answer is $\boxed{\textbf{(B)\ 21}}.$
This post has been edited 3 times. Last edited by Countmath1, Nov 7, 2024, 11:29 PM
Reason: again latex
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
navier3072
121 posts
#25
Y by
This is really harder than 2 huh :wacko:
$\left \lceil \frac{2024}{99} \right \rceil = 21$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lvlup
3 posts
#26
Y by
Marcus_Zhang wrote:
legit read this one wrong as "2024 is the sum of two not necesarily distinct two-digit numbers"

rest in peace my reading skills

yah same i had 2 reread it some times on the test
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
iwastedmyusername
181 posts
#28
Y by
what is bro doing
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Apple_maths60
27 posts
#29
Y by
2024 =20×99 +44
So, total 21 two-digit number required
Ans:21(B)
Z K Y
N Quick Reply
G
H
=
a