G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
Polynomial optimization problem
ReticulatedPython   1
N 5 hours ago by Lankou
Let $$p(x)=-ax^4+x^3$$, where $a$ is a real number. Prove that for all positive $a$, $$p(x) \le \frac{27}{256a^3}.$$
1 reply
ReticulatedPython
Yesterday at 2:51 PM
Lankou
5 hours ago
Find pair of m and n numbers
abduqahhor_math   4
N 5 hours ago by Kempu33334
(m+6:n)=4*(m;n)
4 replies
abduqahhor_math
Yesterday at 2:58 AM
Kempu33334
5 hours ago
Prove that
abduqahhor_math   1
N Yesterday at 6:01 PM by Kempu33334
n^2+3n+5 is not divided to 121
1 reply
abduqahhor_math
Yesterday at 5:37 PM
Kempu33334
Yesterday at 6:01 PM
Three 3-digit numbers
miiirz30   1
N Yesterday at 5:48 PM by jasperE3
Leonard wrote three 3-digit numbers on the board whose sum is $1000$. All of the nine digits are different. Determine which digit does not appear on the board.

Proposed by Giorgi Arabidze, Georgia
1 reply
miiirz30
Yesterday at 5:38 PM
jasperE3
Yesterday at 5:48 PM
No more topics!
Rubik's cube problem
ilikejam   20
N Sunday at 5:46 PM by jasperE3
If I have a solved Rubik's cube, and I make a finite sequence of (legal) moves repeatedly, prove that I will eventually resolve the puzzle.

(this wording is kinda goofy but i hope its sorta intuitive)
20 replies
ilikejam
Mar 28, 2025
jasperE3
Sunday at 5:46 PM
Rubik's cube problem
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ilikejam
34 posts
#1
Y by
If I have a solved Rubik's cube, and I make a finite sequence of (legal) moves repeatedly, prove that I will eventually resolve the puzzle.

(this wording is kinda goofy but i hope its sorta intuitive)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jkim0656
444 posts
#2
Y by
if u say "eventually," doesn't that mean an infinite number of moves?
I mean all rubik's cubes can be solved from any position in 20 moves, so with luck and infinite time you will get those 20 or less moves all correct.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aidan0626
1801 posts
#3
Y by
oh i've thought about this before
imagine all possible rubik's cube positions as vertices, and put them on a directed graph, with an edge from one position to another if the sequence turns the first position into the second
note that every vertex has an indegree of 1 and outdegree of 1
now assume you can't resolve the puzzle, that means you get stuck in a cycle not containing the original position
but to get into such a cycle without the original position, there must be a vertex with an indegree greater than 1 (not sure how to rigorously show this, but inuitively makes sense), which is a contradiction
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kred9
1015 posts
#4
Y by
By the Pigeonhole Principle, there must be some state of the cube that is achieved twice after applying this algorithm arbitrarily many times. Therefore, repeating the algorithm some number of times brings a state back to itself, and hence it will bring the solved state back to itself.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jkim0656
444 posts
#5
Y by
kred9 wrote:
By the Pigeonhole Principle, there must be some state of the cube that is achieved twice after applying this algorithm arbitrarily many times. Therefore, repeating the algorithm some number of times brings a state back to itself, and hence it will bring the solved state back to itself.

dang well said
that's smart
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11147 posts
#6
Y by
Theorem 4.2.2 provides an upper limit with only face turns (standard HTM) of $1260$ moves.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fruitmonster97
2418 posts
#7
Y by
kred9 wrote:
By the Pigeonhole Principle, there must be some state of the cube that is achieved twice after applying this algorithm arbitrarily many times. Therefore, repeating the algorithm some number of times brings a state back to itself, and hence it will bring the solved state back to itself.

I must be missing something, but what if(theoretically) every position except the solved state is in a loop? Yes, the first unsolved position will repeat, but that yields no insight on why the solved face should repeat?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Coolmanppap3
1 post
#8
Y by
fruitmonster97 wrote:
kred9 wrote:
By the Pigeonhole Principle, there must be some state of the cube that is achieved twice after applying this algorithm arbitrarily many times. Therefore, repeating the algorithm some number of times brings a state back to itself, and hence it will bring the solved state back to itself.

I must be missing something, but what if(theoretically) every position except the solved state is in a loop? Yes, the first unsolved position will repeat, but that yields no insight on why the solved face should repeat?

In theory, that solution would take a long time, but it will happen, right? Imagine it like a circle. Every time you bend the circle to make another, the start still remains, even though there is a detour. In a sense, it would loop back, after many loops. (I have no idea btw)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
greenturtle3141
3542 posts
#9
Y by
The generalization of this is phrased in terms of group theory: "in a finite group, every element has a finite order". Here the group is the permutations you can make on a rubiks cube through legal moves. the order of a certain combination of moves is how many times it needs to be repeated to go back to the "nothing happened" outcome (called the "group identity").
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mpcnotnpc
44 posts
#10
Y by
kred9 wrote:
By the Pigeonhole Principle, there must be some state of the cube that is achieved twice after applying this algorithm arbitrarily many times. Therefore, repeating the algorithm some number of times brings a state back to itself, and hence it will bring the solved state back to itself.

Wait is this true? This only implies that some state might repeat, doesn't mean that the initial state will.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vincentwant
1279 posts
#11
Y by
mpcnotnpc wrote:
kred9 wrote:
By the Pigeonhole Principle, there must be some state of the cube that is achieved twice after applying this algorithm arbitrarily many times. Therefore, repeating the algorithm some number of times brings a state back to itself, and hence it will bring the solved state back to itself.

Wait is this true? This only implies that some state might repeat, doesn't mean that the initial state will.

correct me if im wrong but if its not the initial state then its not a group (im rusty at group theory tho so)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
joeym2011
469 posts
#12
Y by
Redacted, misinterpreted problem
This post has been edited 1 time. Last edited by joeym2011, Mar 28, 2025, 11:18 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kred9
1015 posts
#13
Y by
fruitmonster97 wrote:
kred9 wrote:
By the Pigeonhole Principle, there must be some state of the cube that is achieved twice after applying this algorithm arbitrarily many times. Therefore, repeating the algorithm some number of times brings a state back to itself, and hence it will bring the solved state back to itself.

I must be missing something, but what if(theoretically) every position except the solved state is in a loop? Yes, the first unsolved position will repeat, but that yields no insight on why the solved face should repeat?
mpcnotnpc wrote:
kred9 wrote:
By the Pigeonhole Principle, there must be some state of the cube that is achieved twice after applying this algorithm arbitrarily many times. Therefore, repeating the algorithm some number of times brings a state back to itself, and hence it will bring the solved state back to itself.

Wait is this true? This only implies that some state might repeat, doesn't mean that the initial state will.

I'll address these two concerns with my solution. Write the algorithm as $g$. Then suppose $g^a$ and $g^b$ correspond to the same state (some distinct values of $a$ and $b$ must satisfy this by PHP). Therefore, applying the algorithm $b-a$ times to a state returns that state back to itself. This is true no matter what state we are currently at, since every piece is unique on the cube. This means that after $b-a$ algorithms at the beginning, we will return to the solved state.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ilikejam
34 posts
#14
Y by
my solution was that every square (the small ones, there are 9 on each side) moves to a certain position, and the square that was in that position moves to a new one, etc. this will eventually become a cycle, and even though there may be more than one such cycle, given enough repetitions, all the cycles will eventually loop back to the starting, and thus solved, state.
This post has been edited 1 time. Last edited by ilikejam, Mar 28, 2025, 11:46 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ilikejam
34 posts
#15
Y by
jkim0656 wrote:
if u say "eventually," doesn't that mean an infinite number of moves?
I mean all rubik's cubes can be solved from any position in 20 moves, so with luck and infinite time you will get those 20 or less moves all correct.

no i mean i have a certain sequence of moves, maybe like ULU that i repeat until it solves itself
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mpcnotnpc
44 posts
#16
Y by
oop im not familiar with rubik's cube rules, but "legal" moves don't incorporate like turning a side back and forth right; cuz that's like a finite sequence?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11147 posts
#17
Y by
If you turn a side back and forth by $90^\circ$ and then $-90^\circ$ then trivially the puzzle gets resolved after applying this finite sequence of legal moves.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
wuwang2002
1195 posts
#18
Y by
jasperE3 wrote:
Theorem 4.2.2 provides an upper limit with only face turns (standard HTM) of $1260$ moves.

when i was small i counted all 1260 moves and surprisingly didn’t mess up (so much dedication)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mpcnotnpc
44 posts
#19
Y by
jasperE3 wrote:
If you turn a side back and forth by $90^\circ$ and then $-90^\circ$ then trivially the puzzle gets resolved after applying this finite sequence of legal moves.

:skull: mb
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ilikejam
34 posts
#20
Y by
some clarifications:
mpcnotnpc wrote:
oop im not familiar with rubik's cube rules, but "legal" moves don't incorporate like turning a side back and forth right; cuz that's like a finite sequence?

no i mean like no breaking the cube, only twisting the sides, back and forth is ok.
jasperE3 wrote:
If you turn a side back and forth by $90^\circ$ and then $-90^\circ$ then trivially the puzzle gets resolved after applying this finite sequence of legal moves.

yes, however the problem is to prove that every sequence eventually solves the cube, not to find just one.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11147 posts
#21
Y by
I was responding to #16 not the original post.
Z K Y
N Quick Reply
G
H
=
a