ka May Highlights and 2025 AoPS Online Class Information
jlacosta0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.
Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.
Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.
Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Intermediate: Grades 8-12
Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
I have seen many posts talking about commonly asked questions, such as finding the value of ,,,, why or even expressions of those terms combined as if that would make them defined. I have made this post to answer these questions once and for all, and I politely ask everyone to link this post to threads that are talking about this issue.
[list]
[*]Firstly, the case of . It is usually regarded that , not because this works numerically but because it is convenient to define it this way. You will see the convenience of defining other undefined things later on in this post.
[*]What about ? The issue here is that isn't even rigorously defined in this expression. What exactly do we mean by ? Unless the example in question is put in context in a formal manner, then we say that is meaningless.
[*]What about ? Suppose that . Then we would have , absurd. A more rigorous treatment of the idea is that does not exist in the first place, although you will see why in a calculus course. So the point is that is undefined.
[*]What about if ? An article from brilliant has a good explanation. Alternatively, you can just use a geometric series. Notice that
[*]What about ? Usually this is considered to be an indeterminate form, but I would also wager that this is also undefined.
[/list]
Hopefully all of these issues and their corollaries are finally put to rest. Cheers.
2nd EDIT (6/14/22): Since I originally posted this, it has since blown up so I will try to add additional information per the request of users in the thread below.
INDETERMINATE VS UNDEFINED
What makes something indeterminate? As you can see above, there are many things that are indeterminate. While definitions might vary slightly, it is the consensus that the following definition holds: A mathematical expression is be said to be indeterminate if it is not definitively or precisely determined. So how does this make, say, something like indeterminate? In analysis (the theory behind calculus and beyond), limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits. However, if the expression obtained after this substitution does not provide sufficient information to determine the original limit, then the expression is called an indeterminate form. For example, we could say that is an indeterminate form.
But we need to more specific, this is still ambiguous. An indeterminate form is a mathematical expression involving at most two of , or , obtained by applying the algebraic limit theorem (a theorem in analysis, look this up for details) in the process of attempting to determine a limit, which fails to restrict that limit to one specific value or infinity, and thus does not determine the limit being calculated. This is why it is called indeterminate. Some examples of indeterminate forms are etc etc. So what makes something undefined? In the broader scope, something being undefined refers to an expression which is not assigned an interpretation or a value. A function is said to be undefined for points outside its domain. For example, the function given by the mapping is undefined for . On the other hand, is undefined because dividing by is not defined in arithmetic by definition. In other words, something is undefined when it is not defined in some mathematical context.
WHEN THE WATERS GET MUDDIED
So with this notion of indeterminate and undefined, things get convoluted. First of all, just because something is indeterminate does not mean it is not undefined. For example is considered both indeterminate and undefined (but in the context of a limit then it is considered in indeterminate form). Additionally, this notion of something being undefined also means that we can define it in some way. To rephrase, this means that technically, we can make something that is undefined to something that is defined as long as we define it. I'll show you what I mean.
One example of making something undefined into something defined is the extended real number line, which we define as So instead of treating infinity as an idea, we define infinity (positively and negatively, mind you) as actual numbers in the reals. The advantage of doing this is for two reasons. The first is because we can turn this thing into a totally ordered set. Specifically, we can let for each which means that via this order topology each subset has an infimum and supremum and is therefore compact. While this is nice from an analytic standpoint, extending the reals in this way can allow for interesting arithmetic! In it is perfectly OK to say that, So addition, multiplication, and division are all defined nicely. However, notice that we have some indeterminate forms here which are also undefined, So while we define certain things, we also left others undefined/indeterminate in the process! However, in the context of measure theory it is common to define as greenturtle3141 noted below. I encourage to reread what he wrote, it's great stuff! As you may notice, though, dividing by is undefined still! Is there a place where it isn't? Kind of. To do this, we can extend the complex numbers! More formally, we can define this extension as which we call the Riemann Sphere (it actually forms a sphere, pretty cool right?). As a note, means complex infinity, since we are in the complex plane now. Here's the catch: division by is allowed here! In fact, we have where and are left undefined. We also have Furthermore, we actually have some nice properties with multiplication that we didn't have before. In it holds that but and are left as undefined (unless there is an explicit need to change that somehow). One could define the projectively extended reals as we did with , by defining them as They behave in a similar way to the Riemann Sphere, with division by also being allowed with the same indeterminate forms (in addition to some other ones).
Due to excessive spam and inappropriate posts, we have locked the Prealgebra and Beginning Algebra threads.
We will either unlock these threads once we've cleaned them up or start new ones, but for now, do not start new marathon threads for these subjects. Any new marathon threads started while this announcement is up will be immediately deleted.
ki Basic Forum Rules and Info (Read before posting)
jellymoop368
NMay 16, 2018
by harry1234
f(Reminder: Do not post Alcumus or class homework questions on this forum. Instructions below.)f
Welcome to the Middle School Math Forum! Please take a moment to familiarize yourself with the rules.
Overview:
[list]
[*] When you're posting a new topic with a math problem, give the topic a detailed title that includes the subject of the problem (not just "easy problem" or "nice problem")
[*] Stay on topic and be courteous.
[*] Hide solutions!
[*] If you see an inappropriate post in this forum, simply report the post and a moderator will deal with it. Don't make your own post telling people they're not following the rules - that usually just makes the issue worse.
[*] When you post a question that you need help solving, post what you've attempted so far and not just the question. We are here to learn from each other, not to do your homework. :P
[*] Avoid making posts just to thank someone - you can use the upvote function instead
[*] Don't make a new reply just to repeat yourself or comment on the quality of others' posts; instead, post when you have a new insight or question. You can also edit your post if it's the most recent and you want to add more information.
[*] Avoid bumping old posts.
[*] Use GameBot to post alcumus questions.
[*] If you need general MATHCOUNTS/math competition advice, check out the threads below.
[*] Don't post other users' real names.
[*] Advertisements are not allowed. You can advertise your forum on your profile with a link, on your blog, and on user-created forums that permit forum advertisements.
[/list]
As always, if you have any questions, you can PM me or any of the other Middle School Moderators. Once again, if you see spam, it would help a lot if you filed a report instead of responding :)
Marathons!
Relays might be a better way to describe it, but these threads definitely go the distance! One person starts off by posting a problem, and the next person comes up with a solution and a new problem for another user to solve. Here's some of the frequently active marathons running in this forum:
[list][*]Algebra
[*]Prealgebra
[*]Proofs
[*]Factoring
[*]Geometry
[*]Counting & Probability
[*]Number Theory[/list]
Some of these haven't received attention in a while, but these are the main ones for their respective subjects. Rather than starting a new marathon, please give the existing ones a shot first.
I’m looking for a motivated study partner (or small group) to collaborate on college-level competition math problems, particularly from contests like the Putnam, IMO Shortlist, IMC, and similar. My goal is to improve problem-solving skills, explore advanced topics (e.g., combinatorics, NT, analysis), and prepare for upcoming competitions. I’m new to contests but have a strong general math background(CPGE in Morocco). If interested, reply here or DM me to discuss
Proposition 12.1.
(a) The isogonal conjugate of the Gergonne point is the insimilicenter of
the circumcircle and the incircle.
(b) The isogonal conjugate of the Nagel point is the exsimilicenter of the circumcircle and
the incircle.
Note: I need synthetic solution.
Let's call a power of two compact if it can be represented as the sum of no more than not necessarily distinct factorials of positive integer numbers. Prove that the set of compact powers of two is finite.
This is my 1434th post. Here are some of my favorite (non-1434-related) problems that I wrote for various contests over the past few years. A indicates my favorites.
-----
A function is defined over the positive integers as follows: , for prime, and for all relatively prime positive integers and ,. If is the smallest positive integer such that , find the units digit of .
(2023 VMAMC 10 #23)
-----
If convex quadrilateral satisfies ,,,, and , what is the value of ? Express your answer in simplest radical form.
(2024 STNUOCHTAM Sprint #30)
-----
Let and be the greatest odd divisor of . Let for even denote the product of every odd positive integer less than . If for positive integers and where is minimized, find the number of divisors of .
(2024 STNUOCHTAM Sprint #29)
-----
There exists exactly one positive real number such that the graph of the equation consists of a line and a point not on the line. The distance from the point to the line can be expressed as , where and are positive integers and is not divisible by any square greater than . Find .
(2023-2024 WOOT AIME 3 #12)
-----
Let . If are positive real numbers such that ,, and , find . Express your answer as a common fraction.
(2024 STNUOCHTAM Sprint #26)
-----
Let be a convex pentagon satisfying ,,. Let be the intersection of lines and . If has a perimeter of and an area of , find the area of .
(2024 TMC AMC 10 #25)
-----
Let be an acute scalene triangle with longest side . Let be the circumcenter of . Points and are chosen on such that and . If ,, and , the area of the circumcircle of can be expressed as . Find .
(2024 XCMC 10 #23)
-----
Find the sum of the digits of the unique prime number such that is divisible by .
(2024 XCMC 10 #24)
-----
Alex has a by grid of squares. Let be the number of ways that Alex can fill out each square with one of the letters ,,, or such that in every row and column, the number of 's and 's are the same, and the number of 's and 's are the same. (For example, a row with squares labeled or is valid, while a row with squares labeled or is not valid.) Find the remainder when is divided by .
(2024 XCMC 10 #25)
-----
How many ways are there to divide a by grid of squares along the gridlines into two or more pieces such that if three pieces meet at a point , then there are actually four pieces with a vertex at ? An example is shown below.
IMAGE
(2025 ELMOCOUNTS CDR #19)
-----
How many ways are there to label each cell of a 4-by-4 grid of squares with either 1, 2, 3, or 4 such that no two adjacent cells have the same label and no two adjacent cells have labels that sum to 5?
(2025 ELMOCOUNTS Sprint #20)
-----
Let be real numbers satisfying the system of equations What is the value of ?
(2025 ELMOCOUNTS Sprint #26)
-----
There are seven students at a camp. There are seven classes available and each student chooses some of the classes to take. Every student must choose at least two classes. How many ways are there for the students to choose the classes such that each pair of classes has exactly one student in common?
(2025 ELMOCOUNTS Team #8)
-----
In , the incircle is tangent to at , and is the reflection of across the midpoint of . Suppose that the inradii of and are and respectively, and the distance between their incenters is . What is the inradius of ? Express your answer as a common fraction.
(2025 ELMOCOUNTS Team #10)
-----
Let be a positive integer and let be the set of all -tuples of 's and 's. Two elements of are said to be neighboring if and only if they differ in only one coordinate. Bob colors the elements of red and blue such that each blue -tuple is neighboring to exactly two red -tuples and no two red -tuples neighbor each other. If , find the least possible value of .
Hello Everybody!
So most of math season has recently come to an end with mathcounts nats having finished over 2 weeks ago.
I'm sure a lot of you are planning to continue preparing this summer not only for competitions like MATHCOUNTS/AMC8 but also some relatively more advanced comps like AMC10/AMC12.
This summer I am planning to host a summer camp to help out with the preparation. I have attached the flyer to the camp below.
Credentials
Top 30 at MATHCOUNTS Nationals 2024
144 on 2024 AMC 10B
15th Nationally at MMATHS 2024
Experience teaching AMC10/12 and AIME classes for the North South Foundation
Devin and Cowen are playing a game where they take turns flipping a biased coin. The coin lands on heads with probability 2/3 and tails with probability 1/3. Devin goes first. On each turn, the current player flips the coin repeatedly until the coin lands tails. For each heads flipped, the player gains 1 point and continues flipping. If the coin lands tails, their turn ends, and the other player takes their turn. The first player to reach 3 points wins the game immediately. What is the probability that Devin wins the game? Express your answer as a common fraction in lowest terms.
Pat wants to buy four donuts from an ample supply of three types of donuts: glazed, chocolate, and powdered. How many different selections are possible?
1. How many ways can you arrange the letters in the word ALGEBRA such that no two identical letters are adjacent?
2. Find the smallest positive integer n such that is not a prime number.
3. You have 4 red tiles, 3 blue tiles, and 2 green tiles. How many ways can you arrange them in a row such that no two tiles of the same color are adjacent?
4. You flip a fair coin repeatedly until you either get 3 tails or 4 heads. What is the expected value of the number of flips before stopping?
5. Let and be two points in the coordinate plane. A circle is drawn such that is a diameter.
(a). Find the equation of the circle in the form
(b). The are two tangents to the circle that pass through the point . Find the equation of these lines.
hopefully these problems weren't too easy lol
also,
Please tell me if any of these problems have any flaws! (also please put your answers in hide tags or quote tags)
I can prove is injective and anyone continue please?
I noticed that there exists some homogenous-like function by isolating on the . Can you post the claims you made with proof so that we can create a complete solution?
I can prove is injective and anyone continue please?
I noticed that there exists some homogenous-like function by isolating on the . Can you post the claims you made with proof so that we can create a complete solution?
for all so all can be written as for some
Then there exists some homogenous-kinda function (lets call it ) such that and also thats what I meant to say. Correct me if wrong lol.
for all so all can be written as for some
Then there exists some homogenous-kinda function (lets call it ) such that and also thats what I meant to say. Correct me if wrong lol.
I am not sure how to call it in english or even what it is. Hope you can understand what I am saying from the symbols Thats the important part anyways, not some random math definition.
I am not sure how to call it in english or even what it is. Hope you can understand what I am saying from the symbols Thats the important part anyways, not some random math definition.
So basically I am trying to define a second function, g, which exists and satisfies both relations above. Then proving g must be constant will help in proving that the only sol we have found so far is unique. Hope that clears things up.
So basically I am trying to define a second function, g, which exists and satisfies both relations above. Then proving g must be constant will help in proving that the only sol we have found so far is unique. Hope that clears things up.
is a must for all positive . Then it could be any function but we may be able to narrow it down. Just brainstorming, nothing rigorous. This FE has been unsolved for some time, I doubt that I of all people will be the one to solve.
This post has been edited 3 times. Last edited by GreekIdiot, Apr 4, 2025, 8:28 PM