Y by Adventure10, Mango247
A small square is constructed inside a square of area 1 by dividing each side of the unit square into
equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of
if the the area of the small square is exactly 1/1985.
![[asy]
size(200);
pair A=(0,1), B=(1,1), C=(1,0), D=origin;
draw(A--B--C--D--A--(1,1/6));
draw(C--(0,5/6)^^B--(1/6,0)^^D--(5/6,1));
pair point=( 0.5 , 0.5 );
//label("$A$", A, dir(point--A));
//label("$B$", B, dir(point--B));
//label("$C$", C, dir(point--C));
//label("$D$", D, dir(point--D));
label("$1/n$", (11/12,1), N, fontsize(9));[/asy]](//latex.artofproblemsolving.com/8/6/9/869771a29889569e7f650bf31a1241605514e6bd.png)


![[asy]
size(200);
pair A=(0,1), B=(1,1), C=(1,0), D=origin;
draw(A--B--C--D--A--(1,1/6));
draw(C--(0,5/6)^^B--(1/6,0)^^D--(5/6,1));
pair point=( 0.5 , 0.5 );
//label("$A$", A, dir(point--A));
//label("$B$", B, dir(point--B));
//label("$C$", C, dir(point--C));
//label("$D$", D, dir(point--D));
label("$1/n$", (11/12,1), N, fontsize(9));[/asy]](http://latex.artofproblemsolving.com/8/6/9/869771a29889569e7f650bf31a1241605514e6bd.png)
This post has been edited 3 times. Last edited by djmathman, Dec 24, 2015, 4:29 AM
Reason: corners of square not labeled in original diagram
Reason: corners of square not labeled in original diagram