Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
Inscribed Semi-Circle!!!
ehz2701   2
N 2 hours ago by mathafou
A right triangle $ABC$ with legs $AB = a$ and $BC = b$ is drawn with a semicircle inscribed into the triangle. What is the smallest possible radius of the semi-circle and the largest possible radius?

2 replies
ehz2701
Sep 11, 2022
mathafou
2 hours ago
geometry
carvaan   1
N 2 hours ago by vanstraelen
OABC is a trapezium with OC // AB and ∠AOB = 37°. Furthermore, A, B, C all lie on the circumference of a circle centred at O. The perpendicular bisector of OC meets AC at D. If ∠ABD = x°, find last 2 digit of 100x.
1 reply
carvaan
Yesterday at 5:48 PM
vanstraelen
2 hours ago
complex analysis
functiono   1
N 3 hours ago by Mathzeus1024
Source: exam
find the real number $a$ such that

$\oint_{|z-i|=1} \frac{dz}{z^2-z+a} =\pi$
1 reply
functiono
Jan 15, 2024
Mathzeus1024
3 hours ago
Computational Calculus
Munmun5   0
3 hours ago
1. Consider the set of all continuous and infinitely differentiable functions $f$ with domain $[0,2025]$ satisfying $f(0)=0,f'(0)=0,f'(2025)=1$ and $f''$ is strictly increasing on $[0,2025]$ Compute smallest real M such that all functions in this set ,$f(2025)<M$ .
2. Polynomials $A(x)=ax^3+abx^2-4x-c,B(x)=bx^3+bcx^2-6x-a,C(x)=cx^3+cax^2-9x-b$ have local extrema at $b,c,a$ respectively. find $abc$ . Here $a,b,c$ are constants .
3. Let $R$ be the region in the complex plane enclosed by curve $$f(x)=e^{ix}+e^{2ix}+\frac{e^{3ix}}{3}$$for $0\leq x\leq 2\pi$. Compute perimeter of $R$ .
0 replies
Munmun5
3 hours ago
0 replies
Inequalities
sqing   2
N 4 hours ago by DAVROS
Let $x,y\ge 0$ such that $ 13(x^3+y^3) \leq 125(1+xy)$. Prove that
$$  k(x+y)-xy\leq  5(2k-5)$$Where $k\geq 5.6797. $
$$  6(x+y)-xy\leq 35$$
2 replies
sqing
Yesterday at 1:04 PM
DAVROS
4 hours ago
Inequalities
nhathhuyyp5c   1
N 4 hours ago by Mathzeus1024
Let $a, b, c$ be non-negative real numbers such that $a^2 + b^2 + c^2 = 3$. Find the maximum and minimum values of the expression
\[
P = \frac{a}{a^2 + 2} + \frac{b}{b^2 + 2} + \frac{c}{c^2 + 2}.
\]
1 reply
nhathhuyyp5c
Yesterday at 6:35 AM
Mathzeus1024
4 hours ago
Why is this series not the Fourier series of some Riemann integrable function
tohill   0
5 hours ago
$\sum_{n=1}^{\infty}{\frac{\sin nx}{\sqrt{n}}}$ (0<x<2π)
0 replies
tohill
5 hours ago
0 replies
Converging product
mathkiddus   10
N Today at 4:30 AM by HacheB2031
Source: mathkiddus
Evaluate the infinite product, $$\prod_{n=1}^{\infty} \frac{7^n - n}{7^n + n}.$$
10 replies
mathkiddus
Apr 18, 2025
HacheB2031
Today at 4:30 AM
Find the formula
JetFire008   4
N Today at 12:36 AM by HacheB2031
Find a formula in compact form for the general term of the sequence defined recursively by $x_1=1, x_n=x_{n-1}+n-1$ if $n$ is even.
4 replies
JetFire008
Yesterday at 12:23 PM
HacheB2031
Today at 12:36 AM
$f\circ g +g\circ f=0\implies n$ even
al3abijo   4
N Yesterday at 10:37 PM by alexheinis
Let $n$ a positive integer . suppose that there exist two automorphisms $f,g$ of $\mathbb{R}^n$ such that $f\circ g +g\circ f=0$ .
Prove that $n$ is even.
4 replies
al3abijo
Yesterday at 9:05 PM
alexheinis
Yesterday at 10:37 PM
2025 OMOUS Problem 6
enter16180   2
N Yesterday at 9:06 PM by loup blanc
Source: Open Mathematical Olympiad for University Students (OMOUS-2025)
Let $A=\left(a_{i j}\right)_{i, j=1}^{n} \in M_{n}(\mathbb{R})$ be a positive semi-definite matrix. Prove that the matrix $B=\left(b_{i j}\right)_{i, j=1}^{n} \text {, where }$ $b_{i j}=\arcsin \left(x^{i+j}\right) \cdot a_{i j}$, is also positive semi-definite for all $x \in(0,1)$.
2 replies
enter16180
Apr 18, 2025
loup blanc
Yesterday at 9:06 PM
Sum of multinomial in sublinear time
programjames1   0
Yesterday at 7:45 PM
Source: Own
A frog begins at the origin, and makes a sequence of hops either two to the right, two up, or one to the right and one up, all with equal probability.

1. What is the probability the frog eventually lands on $(a, b)$?

2. Find an algorithm to compute this in sublinear time.
0 replies
programjames1
Yesterday at 7:45 PM
0 replies
Find the answer
JetFire008   1
N Yesterday at 6:42 PM by Filipjack
Source: Putnam and Beyond
Find all pairs of real numbers $(a,b)$ such that $ a\lfloor bn \rfloor = b\lfloor an \rfloor$ for all positive integers $n$.
1 reply
JetFire008
Yesterday at 12:31 PM
Filipjack
Yesterday at 6:42 PM
Pyramid packing in sphere
smartvong   2
N Yesterday at 4:23 PM by smartvong
Source: own
Let $A_1$ and $B$ be two points that are diametrically opposite to each other on a unit sphere. $n$ right square pyramids are fitted along the line segment $\overline{A_1B}$, such that the apex and altitude of each pyramid $i$, where $1\le i\le n$, are $A_i$ and $\overline{A_iA_{i+1}}$ respectively, and the points $A_1, A_2, \dots, A_n, A_{n+1}, B$ are collinear.

(a) Find the maximum total volume of $n$ pyramids, with altitudes of equal length, that can be fitted in the sphere, in terms of $n$.

(b) Find the maximum total volume of $n$ pyramids that can be fitted in the sphere, in terms of $n$.

(c) Find the maximum total volume of the pyramids that can be fitted in the sphere as $n$ tends to infinity.

Note: The altitudes of the pyramids are not necessarily equal in length for (b) and (c).
2 replies
smartvong
Apr 13, 2025
smartvong
Yesterday at 4:23 PM
NC State Math Contest Wake Tech Regional Problems and Solutions
mathnerd_101   10
N Apr 13, 2025 by mathnerd_101
Problem 1: Determine the area enclosed by the graphs of $$y=|x-2|+|x-4|-2, y=-|x-3|+4.$$ Hint
Solution to P1

Problem 2: Calculate the sum of the real solutions to the equation $x^\frac{3}{2} -9x-16x^\frac{1}{2} +144=0.$
Hint
Solution to P2



Problem 3: List the two transformations needed to convert the graph $\frac{x-1}{x+2}$ to $\frac{3x-6}{x-1}.$
Hint
Solution to P3

Problem 4: Let $a,b$ be positive real numbers such that $a^2-b^2=20,$ and $a^3-b^3=120.$ Determine the value of $a+\frac{b^2}{a+b}.$
Hint
Solution for P4

Problem 5: Eve and Oscar are playing a game where they roll a fair, six-sided die. If an even number occurs on two consecutive rolls, then Eve wins. If an odd number is immediately followed by an even number, Oscar wins. The die is rolled until one person wins. What is the probability that Oscar wins?
Hint
Solution to P5

Problem 6: In triangle $ABC,$ $M$ is on point $\overline{AB}$ such that $AM = x+32$ and $MB=x+12$ and $N$ is a point on $\overline{AC}$ such that $MN=2x+1$ and $BC=x+22.$ Given that $\overline{MN} || \overline{BC},$ calculate $MN.$
Hint
Solution to P6

Problem 7: Determine the sum of the zeroes of the quadratic of polynomial $Q(x),$ given that $$Q(0)=72, Q(1) = 75, Q(3) = 63.$$
Hint

Solution to Problem 7

Problem 8:
Hint
Solution to P8

Problem 9:
Find the sum of all real solutions to $$(x-4)^{log_8(4x-16)} = 2.$$ Hint
Solution to P9

Problem 10:
Define the function
\[f(x) = 
\begin{cases} 
x - 9, & \text{if } x > 100 \\ 
f(f(x + 10)), & \text{if } x \leq 100 
\end{cases}\]
Calculate \( f(25) \).

Hint

Solution to P10

Problem 11:
Let $a,b,x$ be real numbers such that $$log_{a-b} (a+b) = 3^{a+b}, log_{a+b} (a-b) = 125 \cdot 15^{b-a}, a^2-b^2=3^x. $$Find $x.$
Hint

Solution to P11

Problem 12: Points $A,B,C$ are on circle $Q$ such that $AC=2,$ $\angle AQC = 180^{\circ},$ and $\angle QAB = 30^{\circ}.$ Determine the path length from $A$ to $C$ formed by segment $AB$ and arc $BC.$

Hint
Solution to P12

Problem 13: Determine the number of integers $x$ such that the expression $$\frac{\sqrt{522-x}}{\sqrt{x-80}} $$is also an integer.
Hint

Solution to Problem 13

Problem 14: Determine the smallest positive integer $n$ such that $n!$ is a multiple of $2^15.$

Hint
Solution to Problem 14

Problem 15: Suppose $x$ and $y$ are real numbers such that $x^3+y^3=7,$ and $xy(x+y)=-2.$ Calculate $x-y.$
Funnily enough, I guessed this question right in contest.

Hint
Solution to Problem 15

Problem 16: A sequence of points $p_i = (x_i, y_i)$ will follow the rules such that
\[
p_1 = (0,0), \quad p_{i+1} = (x_i + 1, y_i) \text{ or } (x_i, y_i + 1), \quad p_{10} = (4,5).
\]How many sequences $\{p_i\}_{i=1}^{10}$ are possible such that $p_1$ is the only point with equal coordinates?

Hint
Solution to P16

Problem 18: (Also stolen from akliu's blog post)
Calculate

$$\sum_{k=0}^{11} (\sqrt{2} \sin(\frac{\pi}{4}(1+2k)))^k$$
Hint
Solution to Problem 18

Problem 19: Determine the constant term in the expansion of $(x^3+\frac{1}{x^2})^{10}.$

Hint
Solution to P19

Problem 20:

In a magical pond there are two species of talking fish: trout, whose statements are always true, and \emph{flounder}, whose statements are always false. Six fish -- Alpha, Beta, Gamma, Delta, Epsilon, and Zeta -- live together in the pond. They make the following statements:
Alpha says, "Delta is the same kind of fish as I am.''
Beta says, "Epsilon and Zeta are different from each other.''
Gamma says, "Alpha is a flounder or Beta is a trout.''
Delta says, "The negation of Gamma's statement is true.''
Epsilon says, "I am a trout.''
Zeta says, "Beta is a flounder.''

How many of these fish are trout?

Hint
Solution to P20
SHORT ANSWER QUESTIONS:
1. Five people randomly choose a positive integer less than or equal to $10.$ The probability that at least two people choose the same number can be written as $\frac{m}{n}.$ Find $m+n.$

Hint
Solution to S1

2. Define a function $F(n)$ on the positive integers using the rule that for $n=1,$ $F(n)=0.$ For all prime $n$, $F(n) = 1,$ and for all other $n,$ $F(xy)=xF(y) + yF(x).$ Find the smallest possible value of $n$ such that $F(n) = 2n.$

Hint
Solution to S2

3. How many integers $n \le 2025$ can be written as the sum of two distinct, non-negative integer powers of $3?$
Huge shoutout to OTIS for teaching me how to solve problems like this.

Hint

Solution to S3

4. Let $S$ be the set of positive integers of $x$ such that $x^2-5y^2=1$ for some other positive integer $y.$ Find the only three-digit value of $x$ in $S.$
Hint
Solution to S4

5. Let $N$ be a positive integer and let $M$ be the integer that is formed by removing the first three digits from $N.$ Find the value of $N$ with least value such that $N = 2025M.$
Hint

Solution to S5
10 replies
mathnerd_101
Apr 11, 2025
mathnerd_101
Apr 13, 2025
NC State Math Contest Wake Tech Regional Problems and Solutions
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathnerd_101
1491 posts
#1 • 1 Y
Y by Alex-131
Problem 1: Determine the area enclosed by the graphs of $$y=|x-2|+|x-4|-2, y=-|x-3|+4.$$ Hint
Solution to P1

Problem 2: Calculate the sum of the real solutions to the equation $x^\frac{3}{2} -9x-16x^\frac{1}{2} +144=0.$
Hint
Solution to P2



Problem 3: List the two transformations needed to convert the graph $\frac{x-1}{x+2}$ to $\frac{3x-6}{x-1}.$
Hint
Solution to P3

Problem 4: Let $a,b$ be positive real numbers such that $a^2-b^2=20,$ and $a^3-b^3=120.$ Determine the value of $a+\frac{b^2}{a+b}.$
Hint
Solution for P4

Problem 5: Eve and Oscar are playing a game where they roll a fair, six-sided die. If an even number occurs on two consecutive rolls, then Eve wins. If an odd number is immediately followed by an even number, Oscar wins. The die is rolled until one person wins. What is the probability that Oscar wins?
Hint
Solution to P5

Problem 6: In triangle $ABC,$ $M$ is on point $\overline{AB}$ such that $AM = x+32$ and $MB=x+12$ and $N$ is a point on $\overline{AC}$ such that $MN=2x+1$ and $BC=x+22.$ Given that $\overline{MN} || \overline{BC},$ calculate $MN.$
Hint
Solution to P6

Problem 7: Determine the sum of the zeroes of the quadratic of polynomial $Q(x),$ given that $$Q(0)=72, Q(1) = 75, Q(3) = 63.$$
Hint

Solution to Problem 7

Problem 8:
Hint
Solution to P8

Problem 9:
Find the sum of all real solutions to $$(x-4)^{log_8(4x-16)} = 2.$$ Hint
Solution to P9

Problem 10:
Define the function
\[f(x) = 
\begin{cases} 
x - 9, & \text{if } x > 100 \\ 
f(f(x + 10)), & \text{if } x \leq 100 
\end{cases}\]
Calculate \( f(25) \).

Hint

Solution to P10

Problem 11:
Let $a,b,x$ be real numbers such that $$log_{a-b} (a+b) = 3^{a+b}, log_{a+b} (a-b) = 125 \cdot 15^{b-a}, a^2-b^2=3^x. $$Find $x.$
Hint

Solution to P11

Problem 12: Points $A,B,C$ are on circle $Q$ such that $AC=2,$ $\angle AQC = 180^{\circ},$ and $\angle QAB = 30^{\circ}.$ Determine the path length from $A$ to $C$ formed by segment $AB$ and arc $BC.$

Hint
Solution to P12

Problem 13: Determine the number of integers $x$ such that the expression $$\frac{\sqrt{522-x}}{\sqrt{x-80}} $$is also an integer.
Hint

Solution to Problem 13

Problem 14: Determine the smallest positive integer $n$ such that $n!$ is a multiple of $2^15.$

Hint
Solution to Problem 14

Problem 15: Suppose $x$ and $y$ are real numbers such that $x^3+y^3=7,$ and $xy(x+y)=-2.$ Calculate $x-y.$
Funnily enough, I guessed this question right in contest.

Hint
Solution to Problem 15

Problem 16: A sequence of points $p_i = (x_i, y_i)$ will follow the rules such that
\[
p_1 = (0,0), \quad p_{i+1} = (x_i + 1, y_i) \text{ or } (x_i, y_i + 1), \quad p_{10} = (4,5).
\]How many sequences $\{p_i\}_{i=1}^{10}$ are possible such that $p_1$ is the only point with equal coordinates?

Hint
Solution to P16

Problem 18: (Also stolen from akliu's blog post)
Calculate

$$\sum_{k=0}^{11} (\sqrt{2} \sin(\frac{\pi}{4}(1+2k)))^k$$
Hint
Solution to Problem 18

Problem 19: Determine the constant term in the expansion of $(x^3+\frac{1}{x^2})^{10}.$

Hint
Solution to P19

Problem 20:

In a magical pond there are two species of talking fish: trout, whose statements are always true, and \emph{flounder}, whose statements are always false. Six fish -- Alpha, Beta, Gamma, Delta, Epsilon, and Zeta -- live together in the pond. They make the following statements:
Alpha says, "Delta is the same kind of fish as I am.''
Beta says, "Epsilon and Zeta are different from each other.''
Gamma says, "Alpha is a flounder or Beta is a trout.''
Delta says, "The negation of Gamma's statement is true.''
Epsilon says, "I am a trout.''
Zeta says, "Beta is a flounder.''

How many of these fish are trout?

Hint
Solution to P20
SHORT ANSWER QUESTIONS:
1. Five people randomly choose a positive integer less than or equal to $10.$ The probability that at least two people choose the same number can be written as $\frac{m}{n}.$ Find $m+n.$

Hint
Solution to S1

2. Define a function $F(n)$ on the positive integers using the rule that for $n=1,$ $F(n)=0.$ For all prime $n$, $F(n) = 1,$ and for all other $n,$ $F(xy)=xF(y) + yF(x).$ Find the smallest possible value of $n$ such that $F(n) = 2n.$

Hint
Solution to S2

3. How many integers $n \le 2025$ can be written as the sum of two distinct, non-negative integer powers of $3?$
Huge shoutout to OTIS for teaching me how to solve problems like this.

Hint

Solution to S3

4. Let $S$ be the set of positive integers of $x$ such that $x^2-5y^2=1$ for some other positive integer $y.$ Find the only three-digit value of $x$ in $S.$
Hint
Solution to S4

5. Let $N$ be a positive integer and let $M$ be the integer that is formed by removing the first three digits from $N.$ Find the value of $N$ with least value such that $N = 2025M.$
Hint

Solution to S5
This post has been edited 3 times. Last edited by mathnerd_101, Apr 13, 2025, 2:52 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Aaronjudgeisgoat
893 posts
#2 • 1 Y
Y by mathnerd_101
My solution to S1
My solution to S2
My solution to S3

wow this wake tech contest looks pretty hard compared to the others
This post has been edited 11 times. Last edited by Aaronjudgeisgoat, Apr 11, 2025, 1:55 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ChaitraliKA
1004 posts
#3 • 2 Y
Y by mathnerd_101, Aaronjudgeisgoat
alternate solution to p16 because wth is Bertrand's ballot theorem
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathnerd_101
1491 posts
#4
Y by
Thank you, @above. Finding obscure formulae to solve problems is always fun, too! C:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Aaronjudgeisgoat
893 posts
#5
Y by
question about pell equations
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathnerd_101
1491 posts
#6
Y by
@above yes.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
smbellanki
179 posts
#7
Y by
What was the cutoff for comprehensive this year?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathnerd_101
1491 posts
#8
Y by
It was around mid 90s I believe? But uhh unknown haha :sweat_smile:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
akliu
1794 posts
#9
Y by
My friend got 8th, I'll ask him soon and edit this post when I remember to. If you're curious, the top three scores were 140, 120, 120 respectively.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BackToSchool
1640 posts
#10
Y by
mathnerd_101 wrote:
Problem 4: Let $a,b$ be positive integers such that $a^2-b^2=20,$ and $a^3-b^3=120.$ Determine the value of $a+\frac{b^2}{a+b}.$
Hint

I don't think the problem 4 is correct. There is no such pair of positive integers $(a, b)$.
From $a^2 - b^2 = 20 = 10 \times 2$, we have $a=6, b=4$. However, $a^3 - b^3 = 6^3 - 4^3 = 152 \neq 120$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathnerd_101
1491 posts
#11
Y by
You are right! My apologies. It doesn't have to be positive integers, but rather positive real numbers. I have edited it accordingly.
Z K Y
N Quick Reply
G
H
=
a