Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
set of sum of three or fewer powers of 2, 2024 TMC AIME Mock #13
parmenides51   2
N 19 minutes ago by maromex
Let $S$ denote the set of all positive integers that can be expressed as a sum of three or fewer powers of $2$. Let $N$ be the smallest positive integer that cannot be expressed in the form $a-b$, where $a, b \in S$. Find the remainder when $N$ is divided by $1000$.
2 replies
parmenides51
4 hours ago
maromex
19 minutes ago
Polynomial Factors
somebodyyouusedtoknow   0
29 minutes ago
Source: San Diego Honors Math Contest 2025 Part II, Problem 2
Let $P(x)$ be a polynomial with real coefficients such that $P(x^n) \mid P(x^{n+1})$ for all $n \in \mathbb{N}$. Prove that $P(x) = cx^k$ for some real constant $c$ and $k \in \mathbb{N}$.
0 replies
somebodyyouusedtoknow
29 minutes ago
0 replies
weirdest expo ever
GreekIdiot   5
N 31 minutes ago by maromex
Source: own
Solve $5^x-2^y=z^3$ where $x,y,z \in \mathbb {Z}$.
5 replies
GreekIdiot
Mar 6, 2025
maromex
31 minutes ago
Polygons Which Don't Fit
somebodyyouusedtoknow   0
31 minutes ago
Source: San Diego Honors Math Contest 2025 Part II, Problem 1
Let $P_1,P_2,\ldots,P_n$ be polygons, no two of which are similar. Show that there are polygons $Q_1,Q_2,\ldots,Q_n$ where $Q_i$ is similar to $P_i$ so that for no $i \neq j$ does $Q_i$ contain a polygon that's congruent to $Q_j$.

Note. Here, the word "contain" means for the construction we have, we cannot select a size for $Q_j$ so that $Q_j$ is wholly contained in $Q_i$, and so it does not intersect the edges of $Q_i$ at all.
0 replies
somebodyyouusedtoknow
31 minutes ago
0 replies
A problem with a rectangle
Raul_S_Baz   4
N 39 minutes ago by lpieleanu
On the sides AB and AD of the rectangle ABCD, points M and N are taken such that MB = ND. Let P be the intersection of BN and CD, and Q be the intersection of DM and CB. How can we prove that PQ || MN?
IMAGE
4 replies
Raul_S_Baz
Today at 11:13 AM
lpieleanu
39 minutes ago
sum or products of 2 divisors of 120, 2024 TMC AIME Mock #4
parmenides51   1
N an hour ago by lpieleanu
Let $a_1, a_2,..., a_k$ be the divisors of $120$. Find the first three nonzero digits of $$\sum_{1\le i<j\le k}a_ia_j.$$
1 reply
parmenides51
4 hours ago
lpieleanu
an hour ago
[210\sqrt[5]{181}] 2024 TMC AIME Mock #11
parmenides51   1
N an hour ago by vincentwant
Find the greatest integer less than $210\sqrt[5]{181}$.
1 reply
parmenides51
4 hours ago
vincentwant
an hour ago
GCD of 2^n-2, 3^n-3, 4^n-4, 5^n-5, ......
tom-nowy   1
N an hour ago by tom-nowy
Source: Own
Find all positive integers n such that the greatest common divisor of the sequence
\[ 2^n -2, \;\; 3^n -3, \;\; 4^n -4, \;\; 5^n-5, \, \ldots \ldots \]is $66$. Also, are there infinitely many n for which the greatest common divisor is $6$?
1 reply
tom-nowy
Aug 29, 2023
tom-nowy
an hour ago
Similar to iran 1996
GreekIdiot   0
2 hours ago
Let $f: \mathbb R \to \mathbb R$ be a function such that $f(f(x)+y)=f(f(x)-y)+4f(x)y \: \forall x,y \: \in \: \mathbb R$. Find all such $f$.
0 replies
GreekIdiot
2 hours ago
0 replies
Weird ninja points collinearity
americancheeseburger4281   0
2 hours ago
Source: Someone I know
For some triangle, define its Ninja Point as the point on its circumcircle such that its Steiner line coincides with the Euler line of the triangle. For an triangle $ABC$, define:
[list]
[*]$O$ as its circumcentre, $H$ as its orthocentre and $N_9$ as its nine-point centre.
[*]$M_a$, $M_b$ and $M_c$ to be the midpoint of the smaller arcs.
[*]$G$ as the isogonal conjugate of the Nagel point (i.e. the exsimillicenter of the incircle and circumcircle)
[*]$S$ as the ninja point of $\Delta M_aM_bM_c$
[*]$K$ as the ninja point of the contact triangle
[/list]
Prove that:
$(a)$ Points $K$, $N_9$ and $I$ are collinear, that is $K$ is the Feuerbach point.
$(b)$ Points $H$, $G$ and $S$ are collinear
0 replies
americancheeseburger4281
2 hours ago
0 replies
Minimum where the sum of squares is greater than 3
m0nk   1
N 2 hours ago by oolite
Source: My friend
If $a,b,c \in R^+$ and $a^2+b^2+c^2 \ge 3$.Find the minimum of $S=\sqrt[3]{\frac{a^3+b^3+c^3}{3}}+\frac{a+b+c}{9}$
1 reply
m0nk
Today at 4:57 PM
oolite
2 hours ago
Funny function that there isn't exist
ItzsleepyXD   5
N 3 hours ago by Hamzaachak
Source: Own, Modified from old problem
Determine all functions $f\colon\mathbb{Z}_{>0}\to\mathbb{Z}_{>0}$ such that, for all positive integers $m$ and $n$,
$$ m^{\phi(n)}+n^{\phi(m)} \mid f(m)^n + f(n)^m$$
5 replies
ItzsleepyXD
Apr 10, 2025
Hamzaachak
3 hours ago
Easy Functional Inequality Problem in Taiwan TST
chengbilly   8
N 3 hours ago by megarnie
Source: 2025 Taiwan TST Round 3 Mock P4
Let $a$ be a positive real number. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that $af(x) - f(y) + y > 0$ and
\[
    f(af(x) - f(y) + y) \leq x + f(y) - y, \quad \forall x, y \in \mathbb{R}^+.
    \]
proposed by chengbilly
8 replies
chengbilly
Today at 7:22 AM
megarnie
3 hours ago
Inspired by old results
sqing   2
N 3 hours ago by ErTeeEs06
Source: Own
Let $ a,b,c>0 $ and $ a+b+c=3. $ Prove that
$$ \frac{2}{a}+\frac {2}{ab}+\frac{1}{abc}\geq  4$$$$ \frac{1}{a}+\frac {1}{ab}+\frac{2}{abc}\geq  2+\sqrt 3$$$$ \frac{3}{a}+\frac {3}{ab}+\frac{1}{abc}\geq\frac {7+\sqrt {13}}{2}$$$$ \frac{1}{a}+\frac {1}{ab}+\frac{3}{abc}\geq\frac {5+\sqrt {21}}{2}$$$$ \frac{1}{a}+\frac {1}{ab}+\frac{4}{abc}\geq  3+2\sqrt 2$$
2 replies
sqing
Today at 12:30 PM
ErTeeEs06
3 hours ago
fractional part
Ecrin_eren   3
N Apr 15, 2025 by rchokler
{x^2}+{x}=0.64

How many positive real values of x satisfy this equation?
3 replies
Ecrin_eren
Apr 13, 2025
rchokler
Apr 15, 2025
fractional part
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ecrin_eren
56 posts
#1
Y by
{x^2}+{x}=0.64

How many positive real values of x satisfy this equation?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RPCX
3 posts
#4
Y by
Infinite,all +ve integers of the form n+0.4433981132056604 where n belong to N
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ecrin_eren
56 posts
#5
Y by
How did you get it
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rchokler
2970 posts
#6
Y by
Actually, $\{x^2\}\neq\{x\}^2$ in general.

Let $f(x)=\{x^2\}+\{x\}$. For $n\geq 0$ and $0\leq k\leq 2n$, define the sets $S_{nk}=\left[\sqrt{n^2+k},\sqrt{n^2+k+1}\right)$ and the image sets $T_{nk}=f(S_{nk})$. Note that $f:S_{nk}\to T_{nk}$ is bijective.

Then $\{x\}=x-n$ and $\{x^2\}=x^2-n^2-k$.

Letting $x=n+y$ gives $x^2=n^2+2ny+y^2$ and so $\{x\}=y$ and $\{x^2\}=2ny+y^2-k$ and $T_{nk}=\left[\sqrt{n^2+k}-n,1+\sqrt{n^2+k+1}-n\right)$

The upper bound of $T_n$ is $1+\sqrt{n^2+k+1}-n>1$.

Lower bound of $T_{nk}$:
$\sqrt{n^2+k}-n\leq\frac{16}{25}\implies 25\sqrt{n^2+k}\leq 25n+16\implies 625n^2+625k\leq 625n^2+800n+256\implies k\leq\frac{800n+256}{625}$.

$(2n+1)y+y^2-k=\frac{16}{25}\implies 25y^2+25(2n+1)y-25k-16=0\implies y=\frac{-10n-5+\sqrt{100n^2+100n+100k+89}}{10}$.

So the overall solution set is $\left\{\left.\frac{-5+\sqrt{100n^2+100n+100k+89}}{10}\right|n\geq 0,0\leq k\leq\left\lfloor\frac{800n+256}{625}\right\rfloor\right\}$
Z K Y
N Quick Reply
G
H
=
a